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Abstract

This paper makes three main contributions to the theory of communication complexity and stream
computation. First, we present new bounds on the information complexity ofAUGMENTED-INDEX. In
contrast to analogous results forINDEX by Jain, Radhakrishnan and Sen [J. ACM, 2009], we have to
overcome the significant technical challenge that protocols for AUGMENTED-INDEX may violate the
“rectangle property” due to the inherent input sharing. Second, we use these bounds to resolve an open
problem of Magniez, Mathieu and Nayak [STOC, 2010] that asked about the multi-pass complexity
of recognizing Dyck languages. This results in a natural separation between the standard multi-pass
model and the multi-pass model that permits reverse passes.Third, we present the firstpassive memory
checkersthat verify the interaction transcripts of priority queues, stacks, and double-ended queues. We
obtain tight upper and lower bounds for these problems, thereby addressing an important sub-class of
the memory checking framework of Blum et al. [Algorithmica, 1994].
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1 Introduction

In recent work, Magniez, Mathieu and Nayak [15] considered the streaming complexity of language recog-
nition. That is, given a stringσ of lengthn, what is the (randomized) space complexity of a recognizer for
a languageL that is allowed only sequential access toσ? This question can be viewed as a generalization
of the classic notion of regularity of languages: one now considers automata that are allowed (1) random-
ization, and (2) a variable number of states that may depend on the input length. Their main result provided
near-matching bounds for single-pass recognizers forDYCK(2), the language of properly nested parentheses
of two kinds. In this paper, we look at the broader question and present the firstmulti-passspace lower
bounds for several languages, includingDYCK(2), resolving an open question of theirs. We also study the
complexity of languages that arise in the context ofmemory checking[5], and present tight upper and lower
bounds for them. Our key technical contributions rely on a new understanding of the information complexity
of the augmented index problem, which leads to these multi-pass lower bounds.

Background, Augmented Index, and a New Lower Bound. The INDEX problem is one of a handful of
fundamental problems in communication complexity [14]: Alice has a stringx ∈ {0, 1}n, and Bob has an
index k ∈ [n]; the players wish to determine thekth bit of x, written asxk. It is easy to show that the
problem is “hard” — requiringΩ(n) communication — when messages only go from Alice to Bob, and is
“easy” — solvable usingO(log n) communication — without this restriction. The lower bound extends to
randomized constant-error protocols [1]. This makesINDEX the canonical hard-for-one-way, easy-for-two-
way communication problem. Is there really anything new to say about such a fundamental problem?

As it turns out, there is, provided one asks the right questions. SinceINDEX is an asymmetric problem, it
makes sense to ask for the best possible tradeoff between thenumber,a, of bits communicated by Alice, and
the number,b, communicated by Bob. As shown by Miltersen et al. [16], we must havea ≥ n/2O(b), and a
simple two-round Bob→ Alice→ Bob protocol (with Bob announcing the output) shows thata ≤ ⌈n/2b⌉
is achievable. A more nuanced question asks for the best tradeoff of information revealedby each player to
the other in a protocol forINDEX, also called theinformation costsof Alice and Bob (we shall soon formally
define these). In principle, this tradeoff could have been better, as it is possible for messages to reveal less
information than their length. This issue was considered (in a more general quantum communication setting)
by Jain, Radhakrishnan and Sen [12] who called this the “privacy tradeoff” for the problem, and showed
thata ≥ n/2O(b) still holds, wherea andb now represent information costs.

Such an information cost tradeoff opens up interesting possibilities for applications to lower bounds
for more complex problems, via the direct sum properties of this measure [4, 6]. One such applica-
tion is the aforementionedDYCK(2) lower bound. However, the tradeoff theorem of Jain et al. is not
strong enough to obtain the required direct sum result. One needs a tradeoff lower bound in a variant of
INDEX where Alice and Bob have much more “help,” in two ways. First,we relax INDEX so that Bob
additionally gets to see the length-(k − 1) prefix of Alice’s input; the resulting variant has been called
AUGMENTED-INDEX [10, 13] and the one-way communication lower bound easily extends to it [3]. Sec-
ond, in our variant ofAUGMENTED-INDEX , Bob also gets acheck bitc ∈ {0, 1} and must verify that
xk = c. This second twist clearly does not matter when consideringcommunication complexity, but for
us it makes a huge difference, because our applications require that we measure information cost under an
“easy” distribution, wherexk always equalsc.

With this background, we state our main theorem informally.A formal version appears as Theorem 2.3,
after the necessary definitions.

Theorem 1.1(Informal). In a randomized communication protocol forAUGMENTED-INDEX with two-sided
error at most1/ log2 n, either Alice revealsΩ(n) information about her input, or Bob revealsΩ(1) infor-
mation about his, where information is measured according to an “easy” input distribution.
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The natural point of comparison is a similar theorem of Magniez et al. [15], that works only for restricted
protocols: Alice must be deterministic (thus, her information cost is just her usual communication cost),
and the protocol must be two-round with an Alice→ Bob→ Alice communication pattern. Under these
conditions, for errors belowO(1/n2), they show that either Alice sendsΩ(n) bits, or else Bob reveals
Ω(log n) information. Notice that this theorem is not quite a specialcase of ours, because of the higher
lower bound on Bob’s information cost. This is inevitable: for a general communication pattern, one cannot
obtain a tradeoff that strong, because of the aforementioned a ≤ ⌈n/2b⌉ upper bound. However, we suspect

that the optimum tradeoff lower bound is in fact of the forma ≥ n/2Õ(b), where theÕ-notation hides factors
polylogarithmic inb, and we leave this conjectured generalization of our theorem as an open problem.

Ramifications: Streaming Language Recognition. In the streaming model, we have one-way access to
input and working memory sublinear in the input sizeN . Historically, the problems considered in it have
focused on estimating statistics. Recognizing structuralproperties of strings is just as natural a problem in
this model, and yet such language recognition problems haveonly recently been considered. It transpires
thatAUGMENTED-INDEX has a key role to play in proving bounds here.

A first application is direct: following [15], a two-step argument showsΩ(
√
N) lower bounds for the

multi-pass streaming complexity of Dyck languages. We firstplug Theorem 1.1 into a direct sum theo-
rem, which lower bounds the communication cost of a problem we call MULTI -AI (for “multiple copies of
AUGMENTED-INDEX ”). We then reduceMULTI -AI to, e.g.,DYCK(2). The direct sum theorem is a natural
extension to multiple passes of a similar single-pass theorem ([15], where the authors called the relevant
problemsASCENSION and MOUNTAIN ). Thus, on the lower bound side, our chief contribution is Theo-
rem 1.1, and its most important consequence is themulti-passnature of the resulting lower bounds. In
particular, this demonstrates a curious phenomenon: an explicit, natural data stream problem that is fairly
easy given two passes in opposite directions (Magniez et al.give anO(log2N)-space algorithm), whereas
it is exponentially harder if only multiple unidirectionalpasses are allowed.

A second application is tomemory checking, whose study was initiated by Blum et al. [5] and continued
by numerous groups including Ajtai [2], Chu et al. [8], Dworket al. [11], and Naor and Rothblum [17].
The problem, as considered in this paper, is to observe a sequence ofN updates and queries to (an imple-
mentation of) a data structure, and to report whether or not the implementation operated correctly on the
instance observed. A concrete example is to observe a transcript of operations on a priority queue: we see
a sequence of insertions intermixed with items claimed to bethe results of extractions, and the problem
is to decide whether this is correct. Much of the previous work allowed the checker to beinvasive, by
modifying the inserted items and/or introducing additional read operations. However, when the checker is
more realistically restricted to being completelypassive, and can only observe, the problem becomes that of
understanding the (streaming) complexity ofrecognizingvalid transcripts. For instance, we definePQ to be
the language of valid transcripts of priority queue operations that start and end with an empty queue. One
can similarly define languagesSTACK andDEQUE (for double-ended queues). The invasive protocols of [5]
typically modified the input items by attaching a “timestamp” to each inserted item, and this suggests variant
languagesPQ-TS, STACK-TS, andDEQUE-TS, where each extraction is augmented by the timestamp of its
corresponding insertion. Though we briefly study these variant languages towards the end of this paper, we
consider the languages without auxiliary information to bemore natural from a theoretical point of view,
and more applicable from a practical point of view.

We present new algorithms for these basic memory checking languages: we show thatPQ, STACK, and
DEQUE can each be recognized iñO(

√
N) space and one pass. On the lower bound side, Theorem 1.1 and

MULTI -AI again come into play, givingΩ(
√
N) bounds for each of these problems, even allowing multiple

passes over the transcript. We observe that our upper bound for PQ strengthens thẽO(
√
N) bound of Chu et

al. [8] for PQ-TS. This strengthening is significant, for timestamps can radically simplify problems: we note
thatSTACK-TS can be recognized in justO(logN) space, in marked contrast toSTACK.
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Highlights. Since we view Theorem 1.1 as our most important technical contribution, we first give a
careful exposition of its proof, in Section 2. The main technical hurdle in this proof is dealing with the
fact that Alice and Bob share some of the input, which breaks the useful “rectangle property.” (This is
reminiscent of number-on-the-forehead communication [7], where input sharing makes strong lower bounds
rather hard to prove.) The highlight of our proof is the Fat Transcript Lemma (Lemma 2.6), with its careful
interplay between a suitably weakened rectangle property (Lemma 2.5) and the information cost measure.

After a brief discussion (Section 3) of the direct sum theorem and its implications forMULTI -AI , we
address language recognition, in Section 4. The highlight of this section is our algorithm for recognizing
the languagePQ. The ingenuity of the algorithm is that, rather than determining whether the interaction
sequence is valid directly, the algorithm conceptually reorders inserts and extracts (in addition to some
actual “local” reordering) in such a way that the new sequence is valid if and only if the original sequence
is valid. This reordering procedure is designed such that small-space fingerprinting methods can be used to
capture the state of the priority queue in a way they could notnecessarily have been used for the original
sequence.

2 Augmented Index and an Information Cost Tradeoff

Let AI = AIn (short forAUGMENTED-INDEX ) denote the communication problem where Alice receives a
stringx ∈ {0, 1}n, Bob receives an indexk ∈ [n], the length-(k − 1) prefix ofx, which we denotex1: k−1,
and a check bitc ∈ {0, 1}, and the goal is to outputAI(x, k, c) := xk ⊕ c, i.e., to output1 iff xk 6= c.

We now formalize the notion of information cost. For this, weconsider the most general model of
randomization in communication protocols: the parties mayshare a public coin, and separately, each party
may have its own private coin. LetP be such a randomized protocol forAI , let ξ be a distribution on
{0, 1}n × [n]× {0, 1} (effectively, a distribution on legal inputs toP ) and let(X,K,C) ∼ ξ. LetR denote
the public random string used byP , and letT denote the transcript of messages sent by Alice and Bob
(including the final output bit) in response to this random input (X,K,C): note that, in general,T depends
onX,K,C,R and the (unnamed) private random strings of the players. We define theinformation costof
P underξ to be a pair of real numbers(icostAξ (P ), icost

B
ξ (P )) defined as follows:

icostAξ (P ) := I(T : X | K,C,R) ; icostBξ (P ) := I(T : K,C | X,R) . (1)

In the above definition, the conditioning onR is crucial, for otherwise it is simple to make these costs
equal zero. It follows from the basics of information theorythat, regardless of the choice ofξ, these costs
are bounded from above by the number of bits communicated by Alice and Bob, respectively, inP . Thus, a
tradeoff lower bound on information cost is a stronger statement than a similar tradeoff on numbers of bits
communicated. We now turn to the choice of input distribution.

Definition 2.1. We letµ denote the uniform distribution on{0, 1}n × [n] × {0, 1}. For (X,K,C) ∼ µ,
we letµ0 := µ | (XK = C). Note thatEµ[AI (X,K,C)] = 1

2 , whereasEµ0
[AI (X,K,C)] = 0. Thus,

intuitively, µ is a hard distribution forAI , whereasµ0 is an easy distribution.

We are now ready to state our main theorem. But first, we give a technical lemma that is useful in
formalizing some averaging arguments in its proof.

Lemma 2.2. Consider functionsf1, . . . , fL : D → R
+, and numbersb1, . . . , bL ∈ R

+, whereL > 0 is an
integer andD is a finite domain. LetZ be a random variable taking values inD. Then

∀ i ∈ [L] E[fi(Z)] ≤ bi =⇒ ∃ z ∈ D ∀ i ∈ [L] fi(z) ≤ Lbi .

4



Proof. Choosez to minimizeg(z) :=
∑

i: bi>0 fi(z)/bi, and observe thatE[g(Z)] ≤ L, so thatg(z) ≤ L.
Now pick anyi ∈ [L]. If bi = 0, then clearlyfi(z) = 0. Else,fi(z)/bi ≤ g(z) ≤ L.

Theorem 2.3(Main Theorem; formal version of Theorem 1.1). If P is a randomized protocol forAIn with
error at most1/ log2 n underµ, then eithericostAµ0

(P ) = Ω(n) or icostBµ0
(P ) = Ω(1). In particular, the

same tradeoff holds ifP has worst case two-sided error at most1/ log2 n.

Proof. We split this proof into two parts. First, assuming the contrary, we zoom in on a specific setting of
the public random string ofP and a single transcript that has certain “fatness” properties that play a role
analogous to the “large rectangles” seen in elementary communication complexity. This part of the proof is
reminiscent of arguments in Pǎtraşcu’s proof of the lopsided set disjointness lower bound [18]. Next, and
more interestingly, we use these fatness properties to derive a contradiction, in Lemma 2.6. Throughout the
proof, and the rest of this section, we tacitly assume thatn is large enough.

Assume, to the contrary, that for every choice of constantsδ1 andδ2, there exists a(1/ log2 n)-error
protocolP ∗ for AI with icostAµ0

(P ∗) ≤ δ1n andicostBµ0
(P ∗) ≤ δ2. To write these conditions formally, let

T ∗ denote the transcript ofP ∗ (which uses a public random stringR) on input (X,K,C) ∼ µ; we will
condition onXK = C when necessary, to effectively change the input distribution toµ0. We adopt the
convention that a transcript,t, also specifies its final output bit,out(t). We then have

Pr[out(T ∗) 6= AI (X,K,C)] ≤ 1/ log2 n ,

I(T ∗ : X | K,C,R,XK = C) ≤ δ1n , and

I(T ∗ : K,C | X,R,XK = C) ≤ δ2 .

These three inequalities can be interpreted as bounding theexpectations of three non-negative functions
of the random stringR. Any particular setting ofR reducesP ∗ to a private-coin protocol. Thus, applying
Lemma 2.2 to these three inequalities, we see that there exists aprivate-coinprotocolP for AI such that, if
T denotes the transcript ofP on input(X,K,C) ∼ µ, then

Pr[out(T ) 6= AI (X,K,C)] ≤ 3/ log2 n , (2)

I(T : X | K,C,XK = C) ≤ 3δ1n , and (3)

I(T : K,C | X,XK = C) ≤ 3δ2 . (4)

Notice thatH(X | K,C,XK = C) = n − 1 andH(K,C | X,XK = C) = log n. Thus, by the
characterization of mutual information in terms of entropy, we can rewrite (3) and (4) as

n− 1−H(X | T,K,C,XK = C) ≤ 3δ1n , and (5)

log n−H(K,C | T,X,XK = C) ≤ 3δ2 . (6)

Definition 2.4. Let ν denote the distribution ofT and letν0 := ν | (XK = C). For a specific transcriptt,
let ρt denote the distributionµ | (T = t).

We can interpret (5) and (6) as bounding the expectations of appropriate functions of a random transcript
distributed according toν0. Inequality (2), though, is not of this form, since there is no conditioning on
(XK = C); instead, it says

ET∼ν

[
Pr(X′,K ′,C′)∼ρT [out(T ) 6= AI(X ′,K ′, C ′)]

]
≤ 3/ log2 n . (7)

Since we havePr[XK = C] = 1
2 , every transcriptt satisfiesν0(t) ≤ 2ν(t). Thus, switching the distribution

in the outer expectation fromν to ν0 can at most double the left-hand side. In other words, we have

ET0∼ν0

[
Pr(X′,K ′,C′)∼ρT0

[out(T0) 6= AI (X ′,K ′, C ′)]
]
≤ 6/ log2 n . (8)
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Finally, we can say that transcripts drawn fromν0 typically output “0”, because

PrT0∼ν0 [out(T0) 6= 0] = Pr[out(T ) 6= AI (X,K,C) | XK = C] ≤ 6/ log2 n , (9)

where the final step uses (2). By another averaging argument,applying Lemma 2.2 to the four inequali-
ties (5), (6), (8) and (9), we conclude that there exists a transcriptt such that

n− 1−H(X | K,C,XK = C, T = t) ≤ 12δ1n ,

log n−H(K,C | X,XK = C, T = t) ≤ 12δ2 ,

Pr(X′,K ′,C′)∼ρt [out(t) 6= AI (X,K,C)] ≤ 24/ log2 n , and

out(t) = 0 .

However, by the Fat Transcript Lemma (Lemma 2.6) below, it follows that no transcript can simultaneously
satisfy the above four conditions. This completes the proof.

At this point, we need to understand what is special about thedistributionsρt (from Definition 2.4),
given that they arise from transcripts of private-coin communication protocols. The key fact we need here is
the so-calledrectangle propertyof deterministic communication protocols [14, Ch. 1]. Morespecifically, we
need its extension to private-coin randomized protocols, as used, e.g., by Bar-Yossef et al. [4, Lemma 6.7].

However, there is a complication here due to the fact that Alice and Bob share some information. Had
Bob not received any part of Alice’s input,ρt would have been a product of a distribution on values ofx,
and another distribution on values of(k, c). But because Bobdoes, in fact, start out knowingx1: k−1, we
can only draw the weaker conclusion given in the following lemma.

Lemma 2.5. LetX = {0, 1}n andY = {(w, k, c) ∈ {0, 1}∗ × [n] × {0, 1} : |w| = k − 1}. LetP be
a private-coin protocol in which Alice receives a stringx ∈ X while Bob receives(w, k, c) ∈ Y, with the
promise thatw = x1: k−1. Then, for every transcriptt of P , there exist functionspA,t : X → R

+ and
pB,t : Y → R

+ such that

∀ (x, k, c) ∈ {0, 1}n × [n]× {0, 1} : ρt(x, k, c) = pA,t(x) · pB,t(x[1 . . k − 1], k, c) .

Proof. Let T be the set of all possible transcripts ofP and letT be a random transcript ofP on input
(X,K,C) ∼ µ. By the rectangle property for private-coin protocols (Lemma 6.7 of [4]), there exist map-
pingsqA : T × X → R

+ andqB : T × Y → R
+ such that

Pr[T = t | (X,K,C) = (x, k, c)] = qA(t;x) · qB(t;x1:k−1, k, c) .

Recall thatµ is just a uniform distribution. In particular, it decomposes asµ(x, k, c) = µA(x)µB(k, c).
Thus, by Bayes’ Theorem,

ρt(x, k, c) =
µ(x, k, c) · Pr[T = t | (X,K,C) = (x, k, c)]

Pr[T = t]

=
µA(x)·µB(k, c)·qA(t;x)·qB(t;x1:k−1, k, c)

Pr[T = t]
.

Now setpA,t(x) := µA(x) · qA(t;x)/Pr[T = t] andpB,t(w, k, c) := µB(k, c) · qB(t;w, k, c).

We now state the promised lemma that, as shown above, finishesthe proof of Theorem 2.3. We alert
the reader that,from here on, the distribution of(X,K,C) is no longer uniform; instead, we condition the
uniform distribution on a specific transcript.
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Lemma 2.6 (Fat Transcript Lemma). There exist positive real constantsδ3 and δ4 such that, for every
transcript t of a private-coin communication protocol forAI , with out(t) = 0, we have the following. Let
(X,K,C) ∼ ρt and letε(n) = 24/ log2 n. Then the following conditions do not hold simultaneously:

H(X | K,C,XK = C) ≥ (1− δ3)n , (10)

H(K,C | X,XK = C) ≥ log n− δ4 , (11)

E[AI (X,K,C)] ≤ ε(n) . (12)

Proof. Suppose, to the contrary, that (10), (11) and (12) do hold forevery choice ofδ3 and δ4. Since
C is determined byX andK whenever the conditionXK = C holds, the left-hand side of (11) equals
H(K | X,XK = C). Also, (12) is equivalent toPr[XK = C] ≥ 1− ε(n). Thus, we can simplify (11) to

H(K | X) ≥ Pr[XK = C] · H(K | X,XK = C) ≥ (1− ε(n))(log n− δ4) ≥ log n− 2δ4 , (13)

where the last step uses the boundε(n) = o(1/ log n). Similarly, we can simplify (10) to

H(X) ≥ H(X | K,C) ≥ Pr[XK = C] ·H(X | K,C,XK = C) ≥ (1− ε(n))(1 − δ3)n ≥ (1− 2δ3)n .
(14)

We now expand (12). In what follows, we use notation of the form “u0v” to denote the concatenation
of the stringu, the length-1 string “0”, and the stringv.

E[AI (X,K,C)] =

n∑

k=1

∑

x∈{0,1}n

∑

c∈{0,1}

ρt(x, k, c) · AI (x, k, c)

=
n∑

k=1

∑

u∈{0,1}k−1

∑

b∈{0,1}

∑

v∈{0,1}n−k

∑

c∈{0,1}

ρt(ubv, k, c) · AI(ubv, k, c) . (15)

Let pA = pA,t andpB = pB,t be the functions given by Lemma 2.5. Letλ denote the distribution of
(X,K), i.e., letλ(x, k) = ρt(x, k, 0) + ρt(x, k, 1). Now, noting thatAI(ubv, k, c) = 1 iff b 6= c, we can
manipulate (15) as follows.

E[AI (X,K,C)] =

n∑

k=1

∑

u∈{0,1}k−1

∑

v∈{0,1}n−k

(
ρt(u0v, k, 1) + ρt(u1v, k, 0)

)

=

n∑

k=1

∑

u∈{0,1}k−1

∑

v∈{0,1}n−k

(
pA(u0v) · pB(u, k, 1) + pA(u1v) · pB(u, k, 0)

)

=
n∑

k=1

∑

u∈{0,1}k−1

(
pB(u, k, 1)

∑

v∈{0,1}n−k

pA(u0v) + pB(u, k, 0)
∑

v∈{0,1}n−k

pA(u1v)

)

≥
n∑

k=1

∑

u∈{0,1}k−1

(
pB(u, k, 0) + pB(u, k, 1)

)
·min





∑

v∈{0,1}n−k

pA(u0v),
∑

v∈{0,1}n−k

pA(u1v)





=
n∑

k=1

∑

u∈{0,1}k−1

min





∑

v∈{0,1}n−k

λ(u0v, k),
∑

v∈{0,1}n−k

λ(u1v, k)



 . (16)

Let α : {0, 1}n → [0, 1] andβ : [n] → [0, 1] be the marginals ofλ, i.e.,α(x) :=
∑n

k=1 λ(x, k) and
β(k) :=

∑
x∈{0,1}n λ(x, k). We now make the following crucial observations about thesedistributions.
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Claim 2.7. We have‖λ− α⊗ β‖1 =
∑

x∈{0,1}n
∑n

k=1 |λ(x, k)− α(x)β(k)| ≤
√

(4 ln 2) · δ4.

Proof. Using the characterization of mutual information in terms of Kullback-Leibler divergence, we get

DKL(λ ‖ α⊗ β) = I(K : X) = H(K)−H(K | X) ≤ 2δ4 ,

where the last step uses (13) and the basic fact thatH(K) ≤ log n. The claim now follows from Pinsker’s
inequality (for which see, e.g., [9, Lemma 12.6.1]).

Claim 2.8. We have
∑n

k=1 |β(k)− 1/n| ≤
√

(4 ln 2) · δ4.

Proof. Relax (13) toH(K) ≥ log n − 2δ4. Let γ denote the uniform distribution on[n]. Then we have
DKL(β ‖ γ) = log n−H(K) ≤ 2δ4. Now apply Pinsker’s inequality.

Let δ5 :=
√

(4 ln 2) · δ4. Using Claim 2.7 to estimate the expression (16), keeping inmind that any
particularλ(x, k) term appears at most once in the summation, we get

E[AI (X,K,C)] ≥
n∑

k=1

β(k)
∑

u∈{0,1}k−1

min

{ ∑

v∈{0,1}n−k

α(u0v),
∑

v∈{0,1}n−k

α(u1v)

}
− δ5 . (17)

For eachk ∈ [n], define the probability distribution̂αk on{0, 1}k−1 by α̂k(u) :=
∑

w∈{0,1}n−k+1 α(uw) =
Pr[X1: k−1 = u]. LetHb : [0, 1]→ [0, 1] denote the binary entropy function, i.e.,Hb(z) := −z log z− (1−
z) log(1 − z). LetH−1

b : [0, 1] → [0, 12 ] denote the (well-defined) inverse of this function. Observethat, if
Z is a binary random variable, thenmin{Pr[Z = 0],Pr[Z = 1]} = H−1

b (H(Z)). Using all this, we obtain

min

{ ∑

v∈{0,1}n−k

α(u0v),
∑

v∈{0,1}n−k

α(u1v)

}
= α̂k(u) ·min

{
α̂k+1(u0)

α̂k(u)
,
α̂k+1(u1)

α̂k(u)

}

= α̂k(u) ·H−1
b

(
H(Xk | X1: k−1 = u)

)
. (18)

Plugging this back into (17), we obtain

E[AI (X,K,C)] + δ5 ≥
n∑

k=1

β(k)
∑

u∈{0,1}k−1

α̂k(u) · H−1
b

(
H(Xk | X1: k−1 = u)

)

≥
n∑

k=1

β(k) ·H−1
b




∑

u∈{0,1}k−1

α̂k(u) ·H(Xk | X1: k−1 = u)


 (19)

=

n∑

k=1

β(k) ·H−1
b

(
H(Xk | X1: k−1)

)
≥ H−1

b

(
n∑

k=1

β(k) ·H(Xk | X1: k−1)

)

(20)

≥ H−1
b

(
n∑

k=1

1

n
·H(Xk | X1: k−1)− δ5

)
= H−1

b

(
H(X)

n
− δ5

)
, (21)

where (19) and (20) follow from Jensen’s inequality (and theconvexity ofH−1
b ) and (21) uses Claim 2.8 and

the fact thatH−1
b is increasing on[0, 1]. We now invoke (14) and (12) to obtain

ε(n) + δ5 ≥ H−1
b (1− 2δ3 − δ5) .

Recall thatδ5 =
√

(4 ln 2) · δ4. By choosingδ3 andδ4 small enough, we can make the left-hand side of the
above inequality approach0 and the right-hand side approach12 , and we finally have our contradiction.
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3 A Direct Sum Argument

Let MULTI -AI m,n denote the following communication problem, involving2m playersA1, B1, . . . , Am, Bm.
EachAi receives a stringxi ∈ {0, 1}n and eachBi receives an integerki ∈ [n], a bit ci ∈ {0, 1}, and the
length-(ki − 1) prefix xi

1: ki−1
of xi. The players wish to compute the predicate

∨m
i=1 AIn(x

i, ki, ci). The
players may use private random strings and a common public random string, and usep rounds, where each
round consists of a player sending ans-bit message privately to the next player in the following sequence:

A1 → B1 → A2 → B2 → · · · · · · → Am → Bm → Am → Am−1 · · · · · · → A1 .

At the end of thesep rounds,A1 must announce the answer, which is required to be correct with probability
at least(1− ε) on each possible input. Call such a protocol a[p, s, ε]-protocol. We then have:

Theorem 3.1. Every[p, s, 1/ log2 n]-protocol forMULTI -AI m,n satisfiesps = Ω(min{m,n}).

This theorem is easily seen to be near-optimal: even withp = 1, we have a trivial protocol achieving
s = O(n) and another trivial protocol achievings = O(m log n).

Notice that the augmented index problem studied in Section 2satisfiesAIn = MULTI -AI 1,n. Intu-
itively, a protocol forMULTI -AI m,n must solvem independentAI instances, and thus, must use aboutm
times the communication that a single instance requires. Toprove Theorem 3.1, we formalize this intuition
as a direct sum theorem, which we can prove using a suitable refinement of the information complexity
paradigm [6]. To state this direct sum theorem, we need a suitable notion of information cost for proto-
cols solvingMULTI -AI . Let Q be a[p, s, ε]-protocol for MULTI -AI m,n. Let ξ be a distribution on inputs
to Q and letMm denote the sequence of messages sent by playerBm whenQ is run on a random input
〈(Xi,Ki, Ci)〉mi=1 ∼ ξ, using a public random stringR. We strategically define theinformation costof Q
underξ to be

icostξ(Q) := I(Mm : K1, C1, . . . ,Km, Cm | X1, . . . ,Xm, R) . (22)

It is worth noting that whenm = 1, i.e., we are considering a protocol forAI , this definition specializes to
that of icostBξ (Q) in (1). This is proved in Lemma A.1.

Theorem 3.2 (Direct sum theorem forAI ). Suppose there exists a[p, s, ε]-protocolQ for MULTI -AI m,n.
Then there exists anε-error randomized protocolP for AI in which Alice sends at mostps bits in total, such
thatm · icostBµ0

(P ) ≤ icostµ⊗m
0

(Q) , whereµ0 is as in Definition 2.1 andµ⊗m
0 denotes them-fold product

of µ0 with itself.

Proof. This is a straightforward generalization, to multiple rounds, of a similar theorem of Magniez et
al. [15], which applied only to restricted families of one-round protocols. Details appear in Appendix A.

We can now prove our multi-round communication lower bound on MULTI -AI as follows.

Proof of Theorem 3.1. LetQ be a[p, s, 1/ log2 n]-protocol forMULTI -AI m,n. From basic information the-
ory, it follows that icostµ⊗m

0

(Q) ≤ ps. Now, by Theorem 3.2, there exists a protocolP for AI with

icostBµ0
(P ) ≤ ps/m and in which Alice communicates at mostps bits, so thaticostAµ0

(P ) ≤ ps. By
Theorem 2.3, eitherps/m = Ω(1) or ps = Ω(n); i.e.,ps = Ω(min{m,n}).

4 Streaming Language Recognition and Passive Memory Checking

In this section we present our results for recognizing certain languages in the data stream model. Of partic-
ular interest isDYCK(2), the language consisting of the strings of well-balanced parentheses in two types of
parentheses. Formally, representing ‘(’, ‘)’, ‘[’, and ‘]’asa, ā, b, andb̄ respectively,

9



Definition 4.1. DYCK(2) is the language generated by the context-free grammarS → aSā | bSb̄ | SS | ǫ.

An important class of memory checking problems, which we call passive checking, can also be viewed
as language recognition problems in the data stream model. For example, we definePQ to be the language
corresponding to transcripts of operations, or “interaction sequences,” of a priority queue that begins and
ends with an empty queue. (Without this restriction, the resulting language would requireΩ(N) space to
recognize, for simple reasons [8, Theorem 4].) Formally,

Definition 4.2. An interaction sequenceσ = σ1σ2 . . . σN is a string over the alphabetΣ = {ins(u), ext(u) :
u ∈ [U ]}. Let PQ = PQ(U) be the language defined overΣ whereins(u) is interpreted as an insertion ofu
into a priority queue, andext(u) as an extraction ofu from the priority queue. The state of the queue at any
stepj can be represented by a multisetMj so that

M0 = ∅ ; Mj = Mj−1 \ {min(Mj−1)} if σj = ext(v) ; and Mj = Mj−1 ∪ {u} if σj = ins(u) .
(23)

Thenσ ∈ PQ for |σ| = N iff MN = ∅ and∀j ∈ [N ] (σj = ext(u)⇒ u = min(Mj−1)).

We start by showing that a recognizer forPQ can also recognizeDYCK(2) via an online transformation.
The reduction proceeds as follows. Consider a stringp over parentheses{a, ā, b, b̄} and define

height(p) := | {j : pj ∈ {a, b}} | − | {j : pj ∈ {ā, b̄}} |

andheight(ǫ) = 0. We transformp into ψ(p) = φ(p1:1)φ(p1:2) . . . φ(p1:N ) where:

φ(p1: i) =





ins(2N − 2 height(p1: i−1)) if pi = a

ext(2N − 2 height(p1: i)) if pi = ā

ins(2N − 2 height(p1: i−1)− 1) if pi = b

ext(2N − 2 height(p1: i)− 1) if pi = b̄

For example, the string〈a, a, ā, b, b̄, ā〉 is transformed into〈ins(12), ins(10), ext(10), ins(9), ext(9),
ext(12)〉. The proof thatψ(p) ∈ PQ if and only if p ∈ DYCK(2) is given in Appendix B.

Lemma 4.3. There exists anO(logN)-space stream reduction fromDYCK(2) to PQ(4N).

Our first result on the complexity of stream language recognition uses Theorem 3.1 to resolve the con-
jecture of Magniez, et al. [15] regarding the multi-pass complexity of DYCK(2) andPQ.

Theorem 4.4(Multi-pass Lower Bounds forDYCK andPQ). LetL denote eitherDYCK(2) or PQ(N). Sup-
pose there exists aO(1/ log2N)-error, p-pass,s-space, randomized streaming algorithm that recognizesL
on length-N streams. Thenps = Ω(

√
N).

Proof. Using the reduction of Magniez, et al. [15], anε-error p-pass randomized streaming algorithm for
DYCK(2) that usess bits of space on streams of lengthΘ(mn) can be turned into a[p, s, ε]-protocol for
MULTI -AI m,n. One can similarly reduceMULTI -AI m,n to PQ(N); this was implicitly claimed without proof
in [15]. Alternatively, Lemma 4.3 gives an explicit reduction from MULTI -AI m,n to PQ via DYCK(2). To
complete the proof, we combine these reductions with Theorem 3.1, settingm = n.

Unidirectional versus Bidirectional Passes. As noted earlier,DYCK(2) can be recognized inO(log2N)
space using two passes, one in each direction. On the other hand, the above theorem implies that achieving
polylog(n) space with only unidirectional access to the input would require Ω̃(

√
N) passes. To the best of

our knowledge, this is the first explicit demonstration of such a strong separation between these two natural
data stream models.
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Algorithm 1 PQ-CHECK

1: input σ = σE1σI1σE2σI2 . . . σErσIr whereσE1 = σIr = ∅
2: for k ∈ {1, . . . , r}, u ∈ {1, . . . , U}, do f [k]← 0,X[k, u] ← 0, Y [k, u]← 0, Z[k, u]← 0
3: for i ∈ {1, . . . , r} do
4: for ext(u) ∈ σEi do
5: ℓ← min{k : f [k] ≤ u}
6: Y [ℓ, u]← Y [ℓ, u] + 1
7: Z[ℓ, u]← max(Y [ℓ, u], Z[ℓ, u])
8: for 1 ≤ k < i do f [k]← max(u, f [k])
9: end for

10: for ins(u) ∈ σIi do
11: ℓ← min{k : f [k] ≤ u}
12: if f [ℓ] < u thenX[ℓ, u]← X[ℓ, u] + 1
13: if f [ℓ] = u then Y [ℓ, u]← Y [ℓ, u]− 1
14: end for
15: end for
16: if X 6= Z orX 6= Y then rejectelseaccept

4.1 Passive Checking of Priority Queues

Given the connection betweenPQ andDYCK(2) shown in Lemma 4.3, one might hope to adapt the algo-
rithms of [15] to this problem. However, there seems to be no such easy reduction in this direction. For
intuition, observe thatDYCK(2) has a much stricter requirement on the permitted strings: ifits second half
consists of close-parentheses only, then its first half is uniquely determined. On the other hand, inPQ, one
can find(N/2)! sequences consisting ofN/2 insertions followed byN/2 extractions that all agree on the
second half. This suggests that the two languages are quite different.

We therefore give a novel algorithm that leads to the following theorem, which is the main upper bound
result in this paper.

Theorem 4.5. We can recognize the languagePQ in one pass, usingO(
√
N(logU + logN)) bits of space:

an inputσ ∈ PQ is accepted with certainty, and an inputσ 6∈ PQ is rejected with probability≥ 1− 1/N2.

Overview of the Algorithm. We first present aO(Ur(logU + logN)) space algorithm for the case when
the input string can be decomposed asσ = σE1σI1σE2σI2 . . . σErσIr whereσEi is a sequence of extracts
andσIi is a sequence of inserts. We refer toσEiσIi as theith epochof the string and note that, for sufficiently
larger, anyσ is of this form. After presenting the full space algorithm, we show how to transformσ such that
r = O(

√
N) and subsequently, to reduce the space toÕ(

√
N). Finally, a necessary condition forσ ∈ PQ

is that the extracts in eachσEi are in ascending order and thatσE1 = σIr = ∅. Since both conditions are
easily verified, we assume that they are satisfied.

We present the algorithmPQ-CHECK as Algorithm 1. We first describe its properties informally,before
proceeding to a more formal analysis.

1. For each epochk, PQ-CHECK maintains a valuef [k] that is the maximum value that has been extracted
after thekth epoch. In particular, at the very start of theith epoch,f [i− 1] = 0.

2. Each insert/extract ofu is assignedto the earliest epoch “consistent” with the currentf values maintained
by PQ-CHECK, i.e.,ℓ = min{k : f [k] ≤ u}. Eachext(u) ∈ σEi is assigned to an epoch between1 and
i − 1 (this follows because the extracts inσEi are in increasing order andf [i− 1] equals0 when the
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first extract inσEi is processed), while eachins(u) ∈ σIi is assigned to an epoch between1 and i.
Importantly, forσ ∈ PQ, eachext(u) will be assigned to the same epoch as the most recentins(u).

3. The algorithm maintains arraysX,Y , andZ to track information about occurrences of itemu assigned
to epochk (we later use hashing techniques to reduce the size of this information). Informally,X tracks
the number of insertions ofu assigned to epochk before the first extraction ofu that is assigned to epoch
k, while Y tracks the number of extractions ofu assigned to epochk minus the number of insertions of
u assigned to epochk from the first extraction ofu assigned to epochk onwards. A necessary condition
is that these two counts should agree. However, this counting alone fails to detect extractions ofu that
appear before the corresponding insertions. Therefore,Z is used to identify the maximum “balance” of
u during epochk. This should also matchX if the sequence is correct, and we later show that these are
sufficient conditions to check membership inPQ.

Defineft(k) = max{u : σi = ext(u), |σE1 . . . σIk | + 1 ≤ i ≤ t}. Foru ∈ [U ] andt ∈ [N ], define
b(t, u) = min{k : ft(k) ≤ u}. Given an interaction sequenceσ andu ∈ [U ], define

cnt(σ, u) := |{t : σt = ins(u)}| − |{t : σt = ext(u)}| .

Lemma 4.6. After processing thetth element, Algorithm 1 has computedf [k] = ft(k), i.e., the maximum
value extracted after the end of thekth epoch. For allk, f [k] is non-decreasing ast increases.

Proof. Observe that Algorithm 1 only updatesf [k] in Line 8, fork < i where the current epoch is theith
epoch. The equivalence off [k] andft(k) follows immediately by an inductive argument overt. f [k] =
ft(k) is seen to be non-decreasing by inspection of the definition of ft(k).

Lemma 4.7. LetXt(k, u), Yt(k, u) andZt(k, u) denote the values ofX[k, u], Y [k, u], andZ[k, u] after
processing thetth element. Assume that the firstt elements of the interaction sequence are a prefix of some
interaction sequence inPQ, i.e., for all j ∈ [t], (σj = ext(v) =⇒ v = min(Mj−1)) where{Mj}Nj=0 is the
family of multisets defined in Eq.(23). Then, for anyu ∈ [U ] andk = b(t, u), we have:

cnt(σ1: t, u) = Xt(k, u)− Yt(k, u)

and fork < b(t, u), Xt(k, u) = Yt(k, u).

Proof. Let u ∈ [U ] be an arbitrary element. We proceed by induction ont. The lemma is true fort = 0
whereX0(k, u) = Y0(k, u) = 0 for all k, u. For the inductive step withk = b(t− 1, u), there are four cases
to consider:

1. Caseσt = ins(u): In this caseb(t− 1, u) = b(t, u) = k. Therefore,

cnt(σ1: t, u) = cnt(σ1: t−1, u) + 1 = 1 +Xt−1(k, u)− Yt−1(k, u) = Xt(k, u) − Yt(k, u)

The last step follows whether or notft(b(t− 1, u)) = u (lines 12 and 13 in Algorithm 1).

2. Caseσt = ext(u): In this caseb(t− 1, u) = b(t, u) = k. Therefore,

cnt(σ1: t, u) = cnt(σ1: t−1, u)− 1 = Xt−1(k, u)− (Yt−1(k, u) + 1) = Xt(k, u)− Yt(k, u)

3. Caseσt = ins(v) for v 6= u or σt = ext(v) for v < u: In this caseb(t − 1, u) = b(t, u) = k.
Therefore,

cnt(σ1: t, u) = cnt(σ1: t−1, u) = Xt−1(k, u) − Yt−1(k, u) = Xt(k, u)− Yt(k, u)
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4. Caseσt = ext(v) for u < v. In this case we know thatcnt(σ1: t−1, u) = 0. Assume it was not:
then either there is a minimal prefix ofσ for somej such thatcnt(σ1: j , u) < 0 which implies that
σj = ext(u) but u 6= min(Mj−1); or elsecnt(σ1: t−1, u) > 0 which implies thatv 6= min(Mt−1)
sincemin(Mt−1) ≤ u < v. Either way, we contradict our assumption onσ. Therefore,

cnt(σ1: t, u) = cnt(σ1: t−1, u) = Xt−1(b(t− 1, u), u) − Yt−1(b(t− 1, u), u)

= Xt(b(t− 1, u), u) − Yt(b(t− 1, u), u)

If b(t − 1, u) = b(t, u) we are done but it is possible thatb(t − 1, u) 6= b(t, u). This is because
following this extraction, for all1 ≤ ℓ < i, we setf [ℓ] to max(f [ℓ], v) > u which forcesb(t, u) = i,
wherei is the current epoch. But thenXt(b(t, u), u) = Yt(b(t, u), u) = 0 since no inserts or extracts
of u can yet have been associated with epochi. Hence, even ifb(t − 1, u) 6= b(t, u), cnt(σ1: t, u) =
Xt(k, u) − Yt(k, u) for k = b(t, u).

In all cases, fork < b(t− 1, u), we observe that Algorithm 1 does not modifyX[k, u] or Y [k, u] and these
are already equal by the induction hypothesis. Ifk = b(t − 1, u) < b(t, u), then, as reasoned in case 4
above, we haveXt(k, u) = Yt(k, u) as required.

Theorem 4.8. If σ /∈ PQ, Algorithm 1 rejects, else it accepts.

Proof. If σ /∈ PQ, consider the minimumt such thatσt = ext(u) andu 6= min(Mt−1). Let k = b(t −
1, u). There are two possibilities. First, supposeu /∈ Mt−1. Then, by Lemma 4.7, before processingσt,
Xt−1(k, u) − Yt−1(k, u) = 0. After processingσt we haveYt(k, u) = Yt−1(k, u) + 1. Hence,

Zt(k, u) ≥ Yt(k, u) > Xt(k, u) .

SinceZs(k, u) is non-decreasing ins andXs(k, u) = Xt(k, u) for s > t after f(k) becomes equal tou,
at the end of the algorithmZN (k, u) 6= XN (k, u). Hence the algorithm rejectsσ. Otherwise, suppose
u ∈ Mt−1 but min(Mt−1) = v 6= u. Thencnt(σ1: t−1, v) > 0. Let k = b(t − 1, v) and by Lemma
4.7,Xt−1(k, v) − Yt−1(k, v) > 0. Onceext(u) is processed,f [k] is increased tou and henceXs(k, v) >
Ys(k, v) for all s > t, and the algorithm rejects.

If σ ∈ PQ, then by Lemma 4.7, att = N , Xt(k, u) − Yt(k, u) = 0 for all u, k. Consequently,
Zt(k, u) ≥ Yt(k, u) = Xt(k, u) for all k, u. Sincecnt(σt, u) ≥ 0 for anyσ ∈ PQ, Yt(k, u) ≤ Xt(k, u) for
all t. HenceZt(k, u) ≤ Xt(k, u) and soXN = YN = ZN and the algorithm accepts.

Local Consistency. We now consider a substringσ′ of σ and show that if it does not violate some local
conditions, then without loss of generality it can be assumed to be in a specific form.

Definition 4.9. We sayσ′ is locally consistentif both

1. ∀i < k, u < v : (σ′i = ins(u)) ∧ (σ′k = ext(v)) =⇒ (cnt(σ′i+1: k−1, u) < 0).

2. ∀i < k, u > v : (σ′i = ext(u)) ∧ (σ′k = ext(v)) =⇒ (cnt(σ′i+1: k−1, v) > 0).

Observe that ifσ′ is not locally consistent, thenσ /∈ PQ, since the identified subsequence includes an
extraction of an item which cannot be the smallest in the priority queue.

Lemma 4.10. Givenσ = σprefσ′σsuff. If σ′ is locally consistent, then there exists a mappingγ(σ′) =
σaσbσcσd such thatσprefσ′σsuff ∈ PQ iff σprefγ(σ′)σsuff ∈ PQ. Here,σa and σc are both sequences of
extracts in increasing order; andσb andσd are both sequences of inserts. The algorithmSUB-CHECK tests
if σ′ is locally consistent and, if so, computesγ(σ′) in timeO(|σ′| log |σ′|).
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Algorithm 2 SUB-CHECK

1: input σ′

2: f ← 0; w← 0; E ← ∅; I ← {∞}
3: for i ∈ [|σ′|] do
4: if σ′i = ins(u) then I ← I ∪ {u}
5: if σ′i = ext(v) then
6: m← min(I)
7: if (v > m) then reject
8: if (v = m) then I ← I \ {v}; w ← max(w, v)
9: if (v < m) then

10: if v < max(f,w) then reject
11: f ← v; E ← E ∪ {v}
12: end if
13: end if
14: end for
15: output 〈ext(v1), . . . , ext(v|E|), ins(w), ext(w), ins(u1), . . . , ins(u|I|)〉 where vi and ui are theith

smallest values ofE andI respectively

Proof. We first define the mappingγ procedurally based on local rearrangements of the locally consistent
σ′ which maintain local consistency. First consider all adjacent character pairs of the formins(u), ext(v).
Since the string is locally consistent,u ≥ v. Wheneveru > v, we interchange these characters to obtain
ext(v), ins(u), without affecting local consistency or membership inPQ. Hence, we may assume that for
every two adjacent charactersins(u), ext(v), we haveu = v, i.e., the pair represents an insertion followed
immediately by an extraction of the same item. This generates a stringα(σ′) that satisfiesσprefα(σ′)σsuff ∈
PQ iff σprefσ′σsuff ∈ PQ.

We next define two rearrangement rules on substrings of length three inα(σ′). If applied to a string that
was not locally consistent, they could “fix” errors, and leadto strings which are inPQ; however, since they
are applied to locally consistent strings, the rearrangement preserves membership inPQ.

1. ins(u) ext(u) ext(v)→ ext(v) ins(u) ext(u).

2. ins(v) ins(u) ext(u)→ ins(u) ext(u) ins(v).

By repeatedly applying these rearrangement rules toα(σ′) until no further rearrangement is possible we
obtainβ(σ′). Define the potential functionΦ over interaction sequences asΦ(σ) =

∑
σi=ext(u) i. Observe

that each rearrangement reducesΦ by 1, so the process terminates. Letβ(σ′) denote the final permutation
and note thatσprefβ(σ′)σsuff ∈ PQ iff σprefσ′σsuff ∈ PQ. Then, for somet1, t2, t3, β(σ′) has the form,

〈ext(v1), . . . , ext(vt1), ins(w1), ext(w1), ins(w2), ext(w2), . . . , ins(wt2), ext(wt2), ins(u1), . . . , ins(ut3)〉

wherev1 ≤ v2 ≤ . . . ≤ vt1 . Forw = max{w1, . . . , wt2}, defineγ(σ′) = σaσbσcσd where

σa = 〈ext(v1), . . . , ext(vt1)〉, σb = 〈ins(w)〉, σc = 〈ext(w)〉, and σd = 〈ins(u1), . . . , ins(ut3)〉 .

Observe thatσprefγ(σ′)σsuff ∈ PQ iff σprefβ(σ′)σsuff ∈ PQ andσprefσ′σsuff ∈ PQ iff σprefγ(σ′)σsuff ∈ PQ.
We next show that it is possible to test local consistency andcomputeγ(σ′) directly inO(|σ′| log |σ′|)

time. ConsiderSUB-CHECK in Algorithm 2.
We first argue that Algorithm 2 correctly determines whetherσ′ is locally consistent. First observe thatI

records the multiset of items which have been inserted inσ′ and not yet extracted. A violation of Condition 1
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in Definition 4.9 is detected in line 7 where the existence ofm ∈ I with m < v indicates that an insufficient
number ofext(m) have occurred before theext(v) being considered.

A violation of Condition 2 is detected in line 10: this is whenthe current character isext(v) but there
was anext(u) for u > v earlier but no subsequentins(v) that could be matched with the currentext(v). This
is monitored via two variables,f andw. w is the maximum value extracted that is matched to an insertion
happening withinσ′. f is the most recent value extracted that is not matched withinσ′. Observe that because
of the test in line 10,f is non-decreasing. Consequently,max(f,w) is the largest value extracted so far.
If there is someu > v such thatext(u) occurs inσ′ beforeext(v), thenmax(f,w) ≥ u > v. Hence, it
suffices to track only the greatest extracted item inσ′. We can be sure that there is noins(v) matching the
ext(v) sincem = min(Mi) > v: if v were matched, it would be present inI and found asm.

The algorithm computesγ correctly: I is the multiset of items that are inserted but not extracted in σ,
andE is the multiset of items that are extracted without a matching insert inσ′. As noted above,w tracks
the greatest item which is inserted and subsequently extracted inσ′, so the output has the necessary form.
ImplementingI andE as priority queues means that each character is processed inO(log |σ′|) time, giving
totalO(|σ′| log |σ′|) time andO(|σ′|) space.

Consequently, by breakingσ into sequential substrings of lengthl and reordering each substring (unless
we determine the substring is not locally consistent) we mayensure that the interaction sequence has the
form σ = σE1σI1σE2σI2 . . . σErσIr wherer = 2⌈N/l⌉. The final algorithm runsPQ-CHECK and SUB-
CHECK in parallel. The space required bySUB-CHECK isO(l logU) bits and we will show thatPQ-CHECK

can be implemented inO(r(logN + logU)) bits. Settingl =
√
N yields Theorem 4.5.

Finishing the Proof: A Small-Space Implementation ofPQ-CHECK . Rather than maintain the arrays
X,Y , andZ explicitly in PQ-CHECK, it suffices to keep a linear hash (which serves as a homomorphic
fingerprint) of each array. These fingerprints can be compared, and if they match in Line 16, then, with high
probability, the arrays agree. In Line 7 we need to perform amax operation between two values. This can
be done by maintainingY [k, ft(k)] andZ[k, ft(k)] explicitly for eachk. At any time, there are at most
r such values that are needed: observe that whenft+1(k) > ft(k), Y [k, ft(k)] andZ[k, ft(k)] are never
subsequently altered. The new values forY [k, ft+1(k)] andZ[k, ft+1(k)] are initialized to 0. Hence, the
space of the algorithm isO(r) words to store theY [k, f [k]], Z[k, f [k]] andf [k] values, and a constant
number of fingerprints to representX,Y , andZ.

4.2 Passive Checking of Stacks, Queues, and Deques

Stack. Let STACK denote the language over interaction sequences that corresponds to stack operations.
Now ins(u) corresponds to an insertion ofu to a stack, andext(u) is an extraction ofu from the stack. Then
σ ∈ STACK iff σ corresponds to a valid transcript of operations on a stack which starts and ends empty.
That is, the state of the stack at any stepj can be represented by a stringSj so thatS0 = ∅, Sj = uSj−1 if
σj = ins(u) andSj = Sj−1

2:|Sj−1|
if σj = ext(u). Thenσ ∈ STACK for |σ| = N iff

SN = ∅ and ∀j ∈ [N ], (σj = ext(u) =⇒ u = Sj−1
1 )

Theorem 4.11. EveryO(1/ log2N)-error, p-pass,s-space randomized streaming algorithm to recognize
STACK on lengthN streams must satisfyps = Ω(

√
N). It is possible to recognizeSTACK in one pass with

O(
√
N logN) bits of space with high probability.

Proof. First, we observe that forU = 2, DYCK(U) = STACK if we associateins(u) with u andext(u) with
ū. Therefore, the lower bound follows immediately. For the upper bound, the one-pass algorithm from [15]
to recognizeDYCK(2) can be used to recognizeSTACK over arbitraryU by appealing to their reduction from
DYCK(U) to DYCK(2).
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We note that the algorithm of [15] for recognizingDYCK(2) can be used directly to recognizeDYCK(U)
rather than appealing to the reduction fromDYCK(U) to DYCK(2). In outline, the algorithm works as
follows. The input string is broken into blocks of length

√
N . Within each block, any adjacent pair of the

form 〈ins(u), ext(u)〉 can be matched and removed. When no further removals of pairsare possible, the
block now has the form of a prefix of extracts followed by a suffix of inserts. The algorithm keeps a stack of
hashes of (item, height) pairs, along with the number of items summarized in each hash. Each item extract
in the block, along with the current height, is removed from the hash on the top of the stack, until the hash
supposedly represents no items. If the hash is not identically zero, the algorithm rejects. Otherwise, the
procedure proceeds to the next hash on the stack, until the prefix of extracts are exhausted. Then the inserted
items are hashed with their current height, to build a singlenew hash value which is pushed onto the top of
the stack.

Queue. Let QUEUE denote the language over interaction sequences that correspond to queues. That is,
the state of the queue at any stepj can be represented by a stringQj so thatQ0 = ∅, Qj = Qj−1u if
σj = ins(u) andQj = Qj−1

2:|Qj−1|
if σj = ext(u). Thenσ ∈ QUEUE for |σ| = N iff

QN = ∅ and ∀j ∈ [N ], (σj = ext(u) =⇒ u = Qj−1
1 )

As observed in [5], it is possible to recognizeQUEUE with a single pass andO(logN) space: we use a
single fingerprint to check that the value of theith insert equals the value of theith extract for alli ∈ [N ].

Deque. Let DEQUE denote the language over interaction sequences that corresponds to double-ended
queues. That is, there are now two types of insert and extractoperations, one operation for the head and
one for the tail. Clearly, since a deque can simulate a stack via operations on the tail only, recognizing
DEQUE is at least as hard as recognizingSTACK. For the upper bound, it is possible to adapt the algorithm
of [15]. Again, each block of

√
N operations is partitioned into a prefix of extractions (to head and tail) and

insertions (to head and tail). Now we maintain a deque of hashvalues of item, height pairs. Each extract
to the head is applied to the hash at the head of the deque of hashes, and each extract to the tail is applied
to the hash at the tail of the deque. The same check is applied:any hash which should now summarize no
items must be identically zero (otherwise, the algorithm rejects). Inserts to the head are parceled up into a
hash which is placed at the head of the deque, and inserts to the tail are placed in a hash at the tail of the
deque. Then we acceptσ if after processingσ the algorithm reaches an empty deque and has not rejected at
any point. This gives the following theorem.

Theorem 4.12. EveryO(1/ log2N)-error, p-pass,s-space randomized streaming algorithm to recognize
DEQUE on lengthN streams must satisfyps = Ω(

√
N). It is possible to recognizeDEQUE in one pass with

O(
√
N logN) bits of space with high probability.

4.3 Variations with timestamps

As noted in the introduction, the results of Blum et al. [5] can be viewed as recognizing languages where each
ext(u) is augmented with the timestamp of its matchingins(u), and is denotedext(u, t). These languages
are defined as before, but with the additional constraints that eacht ∈ [N ] appears at most once across all
extracts and

∀j ∈ [N ], (σj = ext(v, t) =⇒ σt = ins(v))

This defines the variant languagesQUEUE-TS, STACK-TS, DEQUE-TS andPQ-TS. The observations of
Blum et al. imply that verifying strings inSTACK-TS andQUEUE-TS (and ensuring that all the timestamps
are also consistent) requires onlyO(logN) space. The same argument also gives anO(logN) bound
for deques. ForPQ-TS, the problem seems harder: Chu et al. [8] gave anÕ(

√
N) streaming algorithm
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which relied heavily on the presence of timestamps (and hence does not recognizePQ without timestamps).
We leave as an open question the problem of fully resolving the complexity of recognizing priority queue
sequences with timestamps, since the reduction via augmented indexing no longer holds in this case.
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A Proof of the Direct Sum Theorem

For completeness, we give a full proof of our direct sum theorem that relates the information complexity of
MULTI -AI with that of AI . We begin with a small technical lemma that is an interestingobservation in its
own right.

Lemma A.1. LetP be a communication protocol involving two players, Alice and Bob, who share a public
random stringR in addition to their private random strings. LetT denote the transcript ofP when Alice
receives inputX and Bob receivesY , from an arbitrary input distribution. LetA andB denote the portions
of T that are communicated by Alice and Bob, respectively. Then

I(T : X | Y,R) = I(A : X | Y,R) and I(T : Y | X,R) = I(B : Y | X,R) .

Proof. By the chain rule for mutual information, we have

I(T : X | Y,R) = I(AB : X | Y,R) = I(A : X | Y,R) + I(B : X | A,Y,R) .

Since Bob’s messages are just some function ofA,Y,R, and his private coins, for any fixed setting of
A,Y,R, we have thatB andX are independent. Thus,I(B : X | A,Y,R) = 0. Similarly, we can show that
I(T : Y | X,R) = I(B : Y | X,R).

Theorem 3.2 (restated).Suppose there exists a[p, s, ε]-protocolQ for MULTI -AI m,n. Then there exists an
ε-error randomized protocolP for AIn in which Alice sends at mostps bits in total, and which satisfies

m · icostBµ0
(P ) ≤ icostµ⊗m

0

(Q) ,

whereµ0 is as in Definition 2.1 andµ⊗m
0 denotes them-fold product ofµ0 with itself.

Proof. UsingQ, we can derive a family,{Pj}j∈[m], of protocols forAI , using the following simulation.
Suppose Alice and Bob receive inputsx and(k, c, x1:k−1) respectively.

1. Alice setsAj ’s input tox and Bob setsBj ’s input to(k, c, x1:k−1).

2. The players generateX1,X2, . . . ,Xj−1,Xj+1, . . . ,Xm,K1, . . . ,Kj−1 independently and uniformly
at random usingpublic coins. They chooseC1, . . . , Cj−1 so thatXi

Ki = Ci for all i ∈ [j − 1]. This
sets the input to playersA1, B1, . . . , Aj−1, Bj−1 and ensures that(Xi,Ki, Ci) ∼ µ0 for all i < j.

3. Bob generatesKj+1,Kj+2, . . . ,Km independently and uniformly at random usingprivatecoins. He
choosesCj+1, . . . , Cm so thatXi

Ki = Ci for eachi ∈ {j + 1, . . . ,m}. This sets the input to players
Aj+1, Bj+1, . . . , Am, Bm and ensures that(Xi,Ki, Ci) ∼ µ0 for all i > j.

4. The players now jointly simulateQ on the random inputZ thus generated. In each round:

(a) Alice simulates playersA1, B1, . . . , Aj and sends Bob the message thatAj would have sent to
Bj .

(b) Bob simulatesBj, Aj+1, . . . , Bm and then sends Alice the message thatBm would have sent to
Am.
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(c) Alice then continues the simulation ofAm, . . . , A1 and moves on to beginning of the next round
(if required), without having to communicate anything.

5. At the end of the simulation, Alice outputs the answer thatplayerA1 would have output inQ.

Clearly, Alice communicates at mostps bits inPj. The definition ofµ0 ensures thatAI (Xi,Ki, Ci) = 0
for all i 6= j, and thereforeMULTI -AI (Z) = AI (X,K,C); thusPj is correct wheneverQ is correct on the
randomly generated input. This bounds the worst-case errorof Pj by ε. To bound the information cost ofPj ,
notice that when the input toPj is distributed according toµ0, it simulatesQ on an input that is distributed
according toµ⊗m

0 . Let (Xj ,Kj, Cj) denote a random input toPj distributed according toµ0, and let
T andB denote the resulting random transcript ofPj , and Bob’s portion of this transcript, respectively.
DefiningMm andR as in (22), we see thatB ≡Mm and that the public random string used byPj is exactly
R′ = (R,X−j,K1, . . . ,Kj−1). Thus,

icostBµ0
(Pj) = I(T : Kj, Cj | Xj , R′)

= I(B : Kj, Cj | Xj , R′)

= I(Mm : Kj, Cj | K1, . . . ,Kj−1,X1, . . . ,Xm, R) ,

where the second equality follows from Lemma A.1. By the chain rule for mutual information, we have

icostµ⊗m
0

(Q) = I(Mm : K1, C1, . . . ,Km, Cm | X1, . . . ,Xm, R)

=
m∑

j=1

I(Mm : Kj, Cj | K1, C1, . . . ,Kj−1, Cj−1,X1, . . . ,Xm, R)

=

m∑

j=1

I(Mm : Kj, Cj | K1, . . . ,Kj−1,X1, . . . ,Xm, R) (24)

=
m∑

j=1

icostBµ0
(Pj) ,

where (24) holds becauseXj andKj completely determineCj, according to the distributionµ0. Pickingj
to minimizeicostBµ0

(Pj) now gives usm · icostBµ0
(Pj) ≤ icostµ⊗m

0

(Q).

B Reduction from DYCK (2) to PQ

Lemma 4.3 (restated).There exists anO(logN)-space stream reduction fromDYCK(2) to PQ(4N).

Proof. Consider a stringp over parentheses{a, ā, b, b̄} and define

height(p) := | {j : pj ∈ {a, b}} | − | {j : pj ∈ {ā, b̄}} |

andheight(ǫ) = 0. Define the transformationψ by ψ(p) = φ(p1:1)φ(p1:2) . . . φ(p1:N ) where:

φ(p1: i) =





ins(2N − 2 height(p1: i−1)) if pi = a

ext(2N − 2 height(p1: i)) if pi = ā

ins(2N − 2 height(p1: i−1)− 1) if pi = b

ext(2N − 2 height(p1: i)− 1) if pi = b̄
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First, note that the transformation can be done inO(logN) space since it is sufficient to maintain the
height of the last two elements. The transformation is onto[4N ], since for any arbitrary stringp of N
parentheses−N < height(p1:N−1) < N .

We now argue thatp ∈ DYCK(2) iff ψ(p) ∈ PQ. For notational convenience, we first defineψ(p|p′) =
φ(p′p1:1)φ(p

′p1:2) . . . φ(p
′p1:|p|) and note thatψ(p′p) = ψ(p′)ψ(p|p′).

• p ∈ DYCK(2) impliesψ(p) ∈ PQ: We prove this by induction on the length ofp. We may decompose
p = p1cc̄p2 wherec ∈ {a, b} andh = height(p1) is maximal over all such decompositions. Without
loss of generality assumec = a. Note thatp1p2 ∈ DYCK(2) and hence, by inductionψ(p1p2) =
ψ(p1)ψ(p2|p1) ∈ PQ. But observe that

ψ(p) = ψ(p1)ψ(bb̄|p1)ψ(p2|p1bb̄) = ψ(p1)ψ(bb̄|p1)ψ(p2|p1)

which is in PQ becauseψ(p1)ψ(p2|p1) ∈ PQ andψ(bb̄|p1) = ins(2N − 2h − 1) ext(2N − 2h − 1)
where2N − 2h− 1 ≤ {u : ins(u) ∈ ψ(p1)}. Sinceh is maximal,2N − h− 1 is indeed the smallest
value when it is extracted.

• p /∈ DYCK(2) impliesψ(p) /∈ PQ. Sincep /∈ DYCK(2), a standard characterization of the language
implies that one of the following cases is true:

– Case 1.height(p1:N ) 6= 0. Therefore, there are different numbers of extracts and inserts in
ψ(p) and henceψ(p) /∈ PQ, since each open parenthesis maps onto an insert and each close
parenthesis maps onto an extract.

– Case 2.height(p1: i) < 0 for somei ∈ [N ]. Therefore, there are more extracts than inserts in a
prefix ofψ(p) and henceψ(p) /∈ PQ.

– Case 3. There exists a smallestj such that for somei < j,

∗ height(p1: i−1) = height(p1: j) =: h

∗ p1: j−1 is a prefix for a string inDYCK(2) and henceψ(p1: j−1) is a prefix for a string inPQ

∗ (pi, pj) = (a, b̄) or (pi, pj) = (b, ā).

Sinceψ(p1: j−1) is a prefix for a string inPQ, we can consider the state,Mj−1, of the priority
queue after the interaction sequenceψ(p1: j−1) as defined in Definition 4.2. Note thatMj−1

contains at most one element from{2N − 2k − 1, 2N − 2k} for eachk (elsej was not the
minimal choice). If(pi, pj) = (b, ā) then2N − 2h− 1 ∈Mj−1. Butφ(p1: j) = ext(2N − 2h)
and we therefore deduce thatψ(p) /∈ PQ. If (pi, pj) = (a, b̄) then2N − 2h ∈ Mj−1 and hence
2N − 2h− 1 /∈Mj−1. Sinceφ(p1: j) = ext(2N − 2h− 1), we deduce thatψ(p) /∈ PQ.
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