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Information Cost Tradeoffs for Augmented Index
and Streaming Language Recognition

Amit Chakrabarti  Graham Cormode Ranganath Kondapally Andrew McGrego¥

Abstract

This paper makes three main contributions to the theory ofraanication complexity and stream
computation. First, we present new bounds on the informat@mplexity ofAUGMENTED-INDEX. In
contrast to analogous results fiwDEX by Jain, Radhakrishnan and Seh ACM 2009], we have to
overcome the significant technical challenge that prowémi AUGMENTED-INDEX may violate the
“rectangle property” due to the inherent input sharing.del; we use these bounds to resolve an open
problem of Magniez, Mathieu and NayaBTOGC 2010] that asked about the multi-pass complexity
of recognizing Dyck languages. This results in a naturabsson between the standard multi-pass
model and the multi-pass model that permits reverse pasbasl, we present the firgassive memory
checkerdghat verify the interaction transcripts of priority queustacks, and double-ended queues. We
obtain tight upper and lower bounds for these problemsgtheaddressing an important sub-class of
the memory checking framework of Blum et ahlfjorithmicg 1994].
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1 Introduction

In recent work, Magniez, Mathieu and Nayak][15] considetedstreaming complexity of language recog-
nition. That is, given a string of lengthn, what is the (randomized) space complexity of a recogniaer f
a languagel that is allowed only sequential accessstd This question can be viewed as a generalization
of the classic notion of regularity of languages: one nowsaters automata that are allowed (1) random-
ization, and (2) a variable number of states that may depenteinput length. Their main result provided
near-matching bounds for single-pass recognizersYaik (2), the language of properly nested parentheses
of two kinds. In this paper, we look at the broader questioth present the firstulti-passspace lower
bounds for several languages, includimgck (2), resolving an open question of theirs. We also study the
complexity of languages that arise in the contexingimory checkin{bl], and present tight upper and lower
bounds for them. Our key technical contributions rely onw nederstanding of the information complexity
of the augmented index problem, which leads to these matispower bounds.

Background, Augmented Index, and a New Lower Bound. TheINDEX problem is one of a handful of
fundamental problems in communication complexity! [14]ic&lhas a string: € {0, 1}", and Bob has an
index k € [n]; the players wish to determine tleh bit of =, written aszy. It is easy to show that the
problem is “hard” — requiring2(n) communication — when messages only go from Alice to Bob, and i
“easy” — solvable using)(log n) communication — without this restriction. The lower boundesads to
randomized constant-error protocals [1]. This makasex the canonical hard-for-one-way, easy-for-two-
way communication problem. Is there really anything newatp about such a fundamental problem?

As itturns out, there is, provided one asks the right questi@incaNDEX is an asymmetric problem, it
makes sense to ask for the best possible tradeoff betweanithieera, of bits communicated by Alice, and
the numberp, communicated by Bob. As shown by Miltersen etlal] [16], weshiavea > n/20(b), and a
simple two-round Bob- Alice — Bob protocol (with Bob announcing the output) shows that [n/2°]
is achievable. A more nuanced question asks for the bestdffaof information revealedyy each player to
the other in a protocol foNDEX, also called thanformation cost®f Alice and Bob (we shall soon formally
define these). In principle, this tradeoff could have bedteheas it is possible for messages to reveal less
information than their length. This issue was considened (nhore general quantum communication setting)
by Jain, Radhakrishnan and Senl[12] who called this the dpyiviradeoff” for the problem, and showed
thata > n/2o(b) still holds, wherex andb now represent information costs.

Such an information cost tradeoff opens up interesting ipiities for applications to lower bounds
for more complex problems, via the direct sum propertieshif theasurel [4,16]. One such applica-
tion is the aforementionedyck(2) lower bound. However, the tradeoff theorem of Jain et al.ds n
strong enough to obtain the required direct sum result. Geelsa tradeoff lower bound in a variant of
INDEX where Alice and Bob have much more “help,” in two ways. Fivgg relaxINDEX so that Bob
additionally gets to see the length-— 1) prefix of Alice’s input; the resulting variant has been adlle
AUGMENTED-INDEX [10,[13] and the one-way communication lower bound easitgreds to it [3]. Sec-
ond, in our variant ofAUGMENTED-INDEX, Bob also gets @heck bitc € {0,1} and must verify that
i, = c. This second twist clearly does not matter when considezomgmunication complexity, but for
us it makes a huge difference, because our applicationsreetpat we measure information cost under an
“easy” distribution, where:;, always equals.

With this background, we state our main theorem informalyormal version appears as Theorem| 2.3,
after the necessary definitions.

Theorem 1.1(Informal). In a randomized communication protocol #wGMENTED-INDEX with two-sided
error at mostl/ log® n, either Alice reveal$)(n) information about her input, or Bob reveal¥(1) infor-
mation about his, where information is measured accordingrt “easy” input distribution.



The natural point of comparison is a similar theorem of Magmt al.[[15], that works only for restricted
protocols: Alice must be deterministic (thus, her inforimatcost is just her usual communication cost),
and the protocol must be two-round with an Aliee Bob — Alice communication pattern. Under these
conditions, for errors belov®(1/n?), they show that either Alice send(n) bits, or else Bob reveals
Q(logn) information. Notice that this theorem is not quite a specase of ours, because of the higher
lower bound on Bob’s information cost. This is inevitabler & general communication pattern, one cannot
obtain a tradeoff that strong, because of the aforemertione [n/2"] upper bound. However, we suspect

that the optimum tradeoff lower bound is in fact of the fagriy n/20(b), where theD-notation hides factors
polylogarithmic inb, and we leave this conjectured generalization of our theae an open problem.

Ramifications: Streaming Language Recognition. In the streaming model, we have one-way access to
input and working memory sublinear in the input si¥e Historically, the problems considered in it have
focused on estimating statistics. Recognizing structuraperties of strings is just as natural a problem in
this model, and yet such language recognition problems balerecently been considered. It transpires
thatAUGMENTED-INDEX has a key role to play in proving bounds here.

A first application is direct: following[[15], a two-step angent shows2(v/N) lower bounds for the
multi-pass streaming complexity of Dyck languages. We fitag Theoreni_1]1 into a direct sum theo-
rem, which lower bounds the communication cost of a problescall MULTI-Al (for “multiple copies of
AUGMENTED-INDEX"). We then reduceauLT!-Al to, e.g.,DYCK(2). The direct sum theorem is a natural
extension to multiple passes of a similar single-pass #med{15], where the authors called the relevant
problemsASCENSION and MOUNTAIN). Thus, on the lower bound side, our chief contribution i®dh
rem[1.1, and its most important consequence isnthiti-passnature of the resulting lower bounds. In
particular, this demonstrates a curious phenomenon: diciéxpatural data stream problem that is fairly
easy given two passes in opposite directions (Magniez giva.anO(log® N)-space algorithm), whereas
it is exponentially harder if only multiple unidirectionphsses are allowed.

A second application is tmemory checkingvhose study was initiated by Blum et all [5] and continued
by numerous groups including Ajtail[2], Chu et all [8], Dwaekal. [11], and Naor and Rothblurn_]17].
The problem, as considered in this paper, is to observe a&reqof N updates and queries to (an imple-
mentation of) a data structure, and to report whether ormirhplementation operated correctly on the
instance observed. A concrete example is to observe a tipingtoperations on a priority queue: we see
a sequence of insertions intermixed with items claimed tahleeresults of extractions, and the problem
is to decide whether this is correct. Much of the previousknatowed the checker to bavasive by
modifying the inserted items and/or introducing additioread operations. However, when the checker is
more realistically restricted to being completelgssive and can only observe, the problem becomes that of
understanding the (streaming) complexityre€ognizingvalid transcripts. For instance, we defipgto be
the language of valid transcripts of priority queue operaithat start and end with an empty queue. One
can similarly define languagesack andDEQUE (for double-ended queues). The invasive protocolslof [5]
typically modified the input items by attaching a “timestdrtgpeach inserted item, and this suggests variant
languagesQ-TS, STACK-TS, andDEQUE-TS, where each extraction is augmented by the timestamp of its
corresponding insertion. Though we briefly study theseavalanguages towards the end of this paper, we
consider the languages without auxiliary information tonbere natural from a theoretical point of view,
and more applicable from a practical point of view.

We present new algorithms for these basic memory checkimgukges: we show tha, sTAck, and
DEQUE can each be recognized @\(\/ﬁ) space and one pass. On the lower bound side, Thdorém 1.1 and
MULTI-Al again come into play, givin@(v/N) bounds for each of these problems, even allowing multiple
passes over the transcript. We observe that our upper bourg&trengthens thé(v/N) bound of Chu et
al. [8] for PQ-TS. This strengthening is significant, for timestamps cancali simplify problems: we note
thatSTACK-TS can be recognized in jus}(log N) space, in marked contrast $0ACK.



Highlights. Since we view Theorern_1.1 as our most important technicatriboion, we first give a
careful exposition of its proof, in Sectidd 2. The main tdchhhurdle in this proof is dealing with the
fact that Alice and Bob share some of the input, which brebaksuseful “rectangle property.” (This is
reminiscent of number-on-the-forehead communicationviere input sharing makes strong lower bounds
rather hard to prove.) The highlight of our proof is the Fatri&cript Lemma (Lemnia 2.6), with its careful
interplay between a suitably weakened rectangle propeamd 2.5) and the information cost measure.

After a brief discussion (Sectidd 3) of the direct sum theownd its implications foMuLTI-Al, we
address language recognition, in Secfibn 4. The highliglie section is our algorithm for recognizing
the languagerQ. The ingenuity of the algorithm is that, rather than deteing whether the interaction
sequence is valid directly, the algorithm conceptuallyrdecs inserts and extracts (in addition to some
actual “local” reordering) in such a way that the new seqedaawalid if and only if the original sequence
is valid. This reordering procedure is designed such thailsspace fingerprinting methods can be used to
capture the state of the priority queue in a way they couldnegessarily have been used for the original
sequence.

2 Augmented Index and an Information Cost Tradeoff

Let Al = Al,, (short forAUGMENTED-INDEX) denote the communication problem where Alice receives a
stringz € {0,1}", Bob receives an indek € [n], the length¢k — 1) prefix of z, which we denotery. 1,
and a check bit € {0, 1}, and the goal is to outputi (z, k, ¢) := x, & ¢, i.e., to outputl iff z; # c.

We now formalize the notion of information cost. For this, w@nsider the most general model of
randomization in communication protocols: the parties stagre a public coin, and separately, each party
may have its own private coin. L& be such a randomized protocol far, let £ be a distribution on
{0,1}" x [n] x {0, 1} (effectively, a distribution on legal inputs ) and let(X, K, C) ~ &. Let R denote
the public random string used k¥, and let7" denote the transcript of messages sent by Alice and Bob
(including the final output bit) in response to this randouin( X, K, C'): note that, in general’ depends
on X, K, C, R and the (unnamed) private random strings of the players. &fiaedtheinformation cosbf
P under¢ to be a pair of real numbe(’s;costg‘(P), icostf(P)) defined as follows:

icost?(P) = I(T: X |K,C,R); icost?(P) = I(T:K,C|X,R). (1)

In the above definition, the conditioning ddis crucial, for otherwise it is simple to make these costs
equal zero. It follows from the basics of information thedtimat, regardless of the choice gfthese costs
are bounded from above by the number of bits communicatedibg And Bob, respectively, iR. Thus, a
tradeoff lower bound on information cost is a stronger staet than a similar tradeoff on numbers of bits
communicated. We now turn to the choice of input distributio

Definition 2.1. We let . denote the uniform distribution of0,1}" x [n] x {0,1}. For(X,K,C) ~ u,
we letyg := p | (Xx = C). Note thatE,[aI(X, K, C)] = 3, whereasE, [AI(X, K,C)] = 0. Thus,
intuitively, u is a hard distribution foal, whereas.g is an easy distribution.

We are now ready to state our main theorem. But first, we givechnical lemma that is useful in
formalizing some averaging arguments in its proof.

Lemma 2.2. Consider functiong, ..., fr, : D — R™, and number$,,...,b;, € RT, whereL > 0 is an
integer andD is a finite domain. LeZ be a random variable taking values ip. Then



Proof. Choosez to minimizeg(z) := .., - fi(2)/bi, and observe thdi[g(Z)] < L, so thatg(z) < L.
Now pick any: € [L]. If b; = 0, then clearlyf;(z) = 0. Else, f;(z)/b; < g(z) < L. O

Theorem 2.3(Main Theorem; formal version of Theordm 1.1} P is a randomized protocol fokl,, with
error at mostl/ log? n under , then eithericostf}0 (P) = Q(n) or icostffo(P) = Q(1). In particular, the
same tradeoff holds iP has worst case two-sided error at magtlog? n.

Proof. We split this proof into two parts. First, assuming the cantrwe zoom in on a specific setting of
the public random string aP and a single transcript that has certain “fatness” progeitiat play a role
analogous to the “large rectangles” seen in elementary aoriwation complexity. This part of the proof is
reminiscent of arguments in Patrascu’s proof of the ldgdiset disjointness lower bound [18]. Next, and
more interestingly, we use these fatness properties teedartontradiction, in Lemma 2.6. Throughout the
proof, and the rest of this section, we tacitly assumesthatlarge enough.

Assume, to the contrary, that for every choice of constaptand d,, there exists &1/ log? n)-error
protocol P* for Al with icost;j‘o (P*) < din andicostf0 (P*) < 9. To write these conditions formally, let
T* denote the transcript aP* (which uses a public random strirg) on input (X, K,C) ~ u; we will
condition onXx = C when necessary, to effectively change the input distidouto 1.o. We adopt the
convention that a transcript, also specifies its final output bint(¢). We then have

Prlout(T*) # Al(X, K,C)] < 1/log’n,
(T*: X | K,C,R,Xx =C) < é&in, and
(T*: K,C| X,R, Xy =C) < 0.

These three inequalities can be interpreted as boundingxiiextations of three non-negative functions
of the random string?. Any particular setting of? reducesP* to a private-coin protocol. Thus, applying
Lemmd 2.2 to these three inequalities, we see that therts epsivate-coinprotocol P for Al such that, if
T denotes the transcript @t on input(X, K, C) ~ p, then

Prlout(T) # Al(X, K,C)] < 3/log?n, (2)
(T:X|K,C,Xg=C) < 36n, and (3)
(T:K,C|X,Xx=C) < 30, (4)

Notice thatH(X | K,C,Xg = C) = n—1andH(K,C | X,Xrg = C) = logn. Thus, by the
characterization of mutual information in terms of entropg can rewrite[(3) and14) as

n—1-HX |T,K,C,Xx =C) < 35n, and (5)
logn —H(K,C |T,X,Xrg =C) < 302. (6)

Definition 2.4. Let v denote the distribution df’ and lety := v | (Xx = C). For a specific transcrigt
let p, denote the distributiop | (7" = ).

We can interpre{({5) an@l(6) as bounding the expectationpmbariate functions of a random transcript
distributed according teg. Inequality [2), though, is not of this form, since there @& aonditioning on
(Xx = C); instead, it says

Erew [Prix: 5r,01mpr [0ut(T) # AI(X', K',C")]] < 3/log?n. (7)

Since we hav@r[X i = C] = 3, every transcript satisfies/ () < 2v(t). Thus, switching the distribution
in the outer expectation fromto 1y can at most double the left-hand side. In other words, we have

E7p g |:Pr(X’,K’7C’)~pTO [out(Tp) # AI(X’,K’,C’)]] < 6/log’n. (8)
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Finally, we can say that transcripts drawn frogtypically output ‘0", because
Pry, o [out(Tp) # 0] = Prout(T) # Al(X, K,C) | X = C] < 6/log*n, 9)

where the final step us€ls] (2). By another averaging argurapptying Lemmad_2]2 to the four inequali-
ties [B), (), [(B) and {9), we conclude that there exists@staptt such that

n—1-HX|KCXg=CT=t) < 120n,

logn —H(K,C | X, Xrg =C, T =t) < 1269,

Pr(x+ g1, cnyep, [0ut(t) # AI(X, K, C)] < 24/log?n, and
out(t) = 0.

However, by the Fat Transcript Lemma (Lemimd 2.6) below,lib¥es that no transcript can simultaneously
satisfy the above four conditions. This completes the proof O

At this point, we need to understand what is special aboutisteibutionsp; (from Definition[2.4),
given that they arise from transcripts of private-coin camination protocols. The key fact we need here is
the so-calledectangle propertyf deterministic communication protocols [14, Ch. 1]. Mepecifically, we
need its extension to private-coin randomized protocalsised, e.g., by Bar-Yossef et al. [4, Lemma 6.7].

However, there is a complication here due to the fact thateddind Bob share some information. Had
Bob not received any part of Alice’s inpup; would have been a product of a distribution on valueg of
and another distribution on values @f, ¢). But because Boloes in fact, start out knowing:;.,_1, we
can only draw the weaker conclusion given in the followingptea.

Lemma 2.5. LetX = {0,1}" andY = {(w,k,c) € {0,1}* x [n] x {0,1} : |w| = k — 1}. LetP be
a private-coin protocol in which Alice receives a stringe X’ while Bob receive$w, k, c) € ), with the
promise thatw = z1.5—1. Then, for every transcript of P, there exist functiong4, : X — R* and
ppt Y — R such that

V(z, k,c) €{0,1}" x [n] x {0,1} :  pi(x,k,c) = pas(x) ppe(z[l..k—1],k,c).

Proof. Let 7 be the set of all possible transcripts Bfand letT be a random transcript a? on input
(X, K,C) ~ u. By the rectangle property for private-coin protocols (lreen6.7 of [4]), there exist map-
pingsqa : T x X — Rt andqp : T x Y — R such that

Pr[T =t|(X,K,C) = (z,k,c)] = qa(t;x) - qp(t;x1.6-1,k,C).

Recall thaty is just a uniform distribution. In particular, it decompesasy(z, k,c) = pa(z)up(k,c).
Thus, by Bayes’ Theorem,

wx, k,c)-Pr[T =t|(X,K,C) = (x,k,c)]

pe(z,k,c) =

Pr[T =]
_ /LA(x)'/LB(kvC)'QA(t;m)'QB(t;xl:k—1>k>c)
Pr[T =t '
Now setpa (z) := pa(x) - qa(t;z)/ Pr[T = t] andpp ¢(w, k, ¢) := pup(k,c) - q(t;w, k, ). O

We now state the promised lemma that, as shown above, finisbgwoof of Theorerh 213. We alert
the reader thafrom here on, the distribution dfX, K, C') is no longer uniforminstead, we condition the
uniform distribution on a specific transcript.



Lemma 2.6 (Fat Transcript Lemma)There exist positive real constands and ¢, such that, for every
transcriptt of a private-coin communication protocol far, with out(t) = 0, we have the following. Let
(X, K,C) ~ p; and lete(n) = 24/ log? n. Then the following conditions do not hold simultaneously:

H(X | K,C, X5 =C) > (1—d3)n, (10)
H(K,C | X,Xkgk =C) > logn—d4, (11)
ElAI(X,K,C)] < g(n). (12)

Proof. Suppose, to the contrary, that (1d),1(11) and (12) do holdef@ry choice ofé; and 4. Since
C'is determined byX and K whenever the conditioX, = C holds, the left-hand side of (IL1) equals
H(K | X, Xk = C). Also, (12) is equivalent t®r[ X = C] > 1 — £(n). Thus, we can simplify((11) to

HK|X) > PriXe =C] - H(K | X, Xgk =C) > (1 —¢(n))(logn —d4) > logn —244, (13)
where the last step uses the bouttd) = o(1/log n). Similarly, we can simplify[(10) to

H(X)>H(X | K,C) >Pr[Xxk =C] - HX | K,C,Xrg =C) > (1 —¢(n))(1 —d3)n > (1 — 203)n
(14)
We now expand(12). In what follows, we use notation of thenfér.0v” to denote the concatenation
of the stringu, the lengtht string “0”, and the string.

Eal(X,K,C)] = Z Z Z pr(x, k,c) - Al(z, k,c)

k=1ze{0,1}™ cc{0,1}

= Z Z Z Z Z pe(ubv, k,c) - Al (ubv, k, c) . (15)

k=1uec{0,1}+1 be{0,1} ve{0,1}n—* ce{0,1}

Letpa = pa: andpp = pp; be the functions given by Lemnia 2.5. Ledenote the distribution of
(X,K), i.e, letA(z, k) = pi(z,k,0) + pi(z, k,1). Now, noting thatal (ubv, k,c) = 1iff b # ¢, we can
manipulate[(Ib) as follows.

Eal(X, K, C)] Z Z Z (pt(uOv,k:,l) —I—pt(ulv,k,0)>

k=1ue{0,1}k-1 ve{0,1}n—*

- Z Z Z (pA(UO’U) ‘pp(u,k,1) + pa(ulv) - pp(u, k,O))

k=1ue{0,1}k-1ve{0,1}n—F

:Z Z (pB(u,k,l) Z pa(ulv) + pp(u,k,0) Z pA(ulv)>

k=1ue{0,1}k—1 ve{0,1}n—Fk ve{0,1}n—k

Z Z (pB(u,k,O)—i—pB(u,k,l))'min{ Z pa(ulv), Z pA(ulv)}

k=1 ue{0,1}k-1 ve{0,1}n—k ve{0,1}n—k

= Z Z min{ Z Au0v, k), Z )\(ulv,k)}. (16)

k=1ue{0,1}k—1 ve{0,1}n—k vef{0,1}n—k

v

Leta : {0,1}" — [0,1] and : [n] — [0,1] be the marginals of, i.e.,a(z) := >"}_; A(z, k) and
B(k) == >_,cq013n Az, k). We now make the following crucial observations about th:bsmbunons
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Claim 2.7. We have|A — a @ Bl = 3-,co.13n 2okt M@, k) — a(z)B(k)] < /(41n2) - 04
Proof. Using the characterization of mutual information in termh&ollback-Leibler divergence, we get
Drr(AM|a®p) = (K :X) = HK)-H(K | X) < 204,

where the last step usés [13) and the basic facttiaf) < logn. The claim now follows from Pinsker’s
inequality (for which see, e.gl.|[9, Lemma 12.6.1)). O

Claim 2.8. We havey ;_, |3(k) — 1/n| < 1/(41In2) - 04.

Proof. Relax [13) toH(K) > logn — 24,4. Let~ denote the uniform distribution om]. Then we have
Drr(B | v) =logn —H(K) < 2§,. Now apply Pinsker’s inequality. O

Let 65 := /(4In2) - d4. Using Claim 2.V to estimate the expressibnl (16), keepingiimd that any
particular\(z, k) term appears at most once in the summation, we get

Elal(X, K, C)] Zﬁ Z min{ Z a(ulv), Z a(ulv)} — 5. 17)
ue{0,1}k-1 ve{0,1}n—k ve{0,1}n—k
For eachk ¢ [n], define the probability distributiofi, on {0, 1}¥~! by a4y (u) := D wefoyn—kt1 a(uw) =
PriXy.p—1 = u. LetHb [0,1] — 0, 1] denote the binary entropy function, i.&(z) := —zlog z — (1 —
z)log(1l — 2). LetH‘ : [0,1] — [0, 5] denote the (well-defined) mverse of this function. Obseha, if
Z is a binary random variable, themm{Pr[ = 0],Pr[Z = 1]} = H; '(H(Z)). Using all this, we obtain

min{ > a(uov), > a(ulv)} — Ax(u) - min {@Zl(%o)jdkfl(un}

ve{0,1}nF ve{0, 1}k e (u)

= Gy(w) ;' (H(X | X1 =w). (18)

Plugging this back intd (17), we obtain

EAI(X,K,C)+8 > S Bk) Y an(u) Hy' (H(Xk]Xlzk_l :u))

k=1 ue{0,1}k—1
> Zﬂ(k) H! ( S dn(u) H(Xp | Xipoy = u)) (19)
=1 we{0 1}k
:Zﬁ < (Xk|X1k1) (Zﬁ Xk|Xlk1)>
(20)
> H* (Z% CH(Xg | X1.5-1) — 55) = H,* (@ - 55) , (21)
k=1

where [19) and (20) follow from Jensen’s inequality (anddbmvexity obe‘l) and [21) uses Clain 2.8 and
the fact thatHb‘1 is increasing on0, 1]. We now invoke[(I¥) and (12) to obtain

e(n) +65 > Hy'(1— 255 —d5).

Recall thatds = /(41n2) - 04. By choosingds andd, small enough, we can make the left-hand side of the
above inequality approadhand the right-hand side approaghand we finally have our contradiction]



3 A Direct Sum Argument

LetMULTI -Al,, », denote the following communication problem, involvitwy playersA,, By, ..., Ay, Bn,.
Each4; receives a string® € {0,1}" and eachB; receives an intege¥’ € [n], a bit¢’ € {0, 1}, and the
length{k’ — 1) prefi_x al ., of b, The players wish to compute the_ predicgte | A1, (z', k", ). The
players may use private random strings and a common pulpslgora string, and usg rounds where each
round consists of a player sending &bit message privately to the next player in the followingisence:

Al - By —> Ay > By — -+ = An > Bp > Ay — Ay — A,

At the end of these rounds,A4; must announce the answer, which is required to be correbtpritbability
atleast(1 — <) on each possible input. Call such a protocb.a, c]-protocol. We then have:

Theorem 3.1. Every|p, s, 1/ log? n]-protocol for MULTI -Al, ,, satisfiegs = Q (min{m,n}).

This theorem is easily seen to be near-optimal: even with 1, we have a trivial protocol achieving
s = O(n) and another trivial protocol achieving= O(mlogn).

Notice that the augmented index problem studied in SefisatBfiesAl,, = MULTI-Al;,. Intu-
itively, a protocol formuLTI-Al,, , Must solvem independentl instances, and thus, must use about
times the communication that a single instance requiresqardee Theorer 3]1, we formalize this intuition
as a direct sum theorem, which we can prove using a suitafifeemeent of the information complexity
paradigm [[6]. To state this direct sum theorem, we need aldaitnotion of information cost for proto-
cols solvingMULTI-Al. Let @ be a[p, s, ¢]-protocol for MULTI-Al,, ,. Let & be a distribution on inputs
to Q and letM,,, denote the sequence of messages sent by playewhen is run on a random input
(X', K*,C)™, ~ &, using a public random string. We strategically define thieformation cosbf Q
under¢ to be

icoste(Q) == I(M,,: K',C*, ..., K™ C™| X',..., X" R). (22)

It is worth noting that whemn = 1, i.e., we are considering a protocol fer, this definition specializes to
that oficost (@) in (@). This is proved in LemmaAlLl.

Theorem 3.2(Direct sum theorem fonl). Suppose there exists[g, s, ¢]-protocol () for MULTI-Al, ,.

Then there exists arrerror randomized protocaP for Al in which Alice sends at mogt bits in total, such
thatm - icosth(P) < iCOStu(()gm(Q) , where is as in Definitio 21l ang,y™ denotes then-fold product
of ug with itself.

Proof. This is a straightforward generalization, to multiple rdanof a similar theorem of Magniez et
al. [15], which applied only to restricted families of onaind protocols. Details appear in Appendix A

We can now prove our multi-round communication lower boundioLTI-Al as follows.

Proof of TheoremB.1l Let Q be a[p, s, 1/ log? n]-protocol formuLTI -Al m,n- From basic information the-
ory, it follows thaticost “?m(Q) < ps. Now, by Theoreni_3]2, there exists a protoddlfor Al with

icostf0 (P) < ps/m and in which Alice communicates at magst bits, so thaﬁcostf}O(P) < ps. By
Theoren 2.B, eitheps/m = Q(1) or ps = Q(n); i.e.,ps = Q (min{m, n}). O

4 Streaming Language Recognition and Passive Memory Checig

In this section we present our results for recognizing geitanguages in the data stream model. Of partic-

ular interest iDYCK(2), the language consisting of the strings of well-balancedrmaeses in two types of
parentheses. Formally, representing ‘(’, °)’, [, and 85a, a, b, andb respectively,
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Definition 4.1. byck(2) is the language generated by the context-free gransimaraSa | bSb | SS | e.

An important class of memory checking problems, which wé gassive checkingan also be viewed
as language recognition problems in the data stream modekxample, we defineQ to be the language
corresponding to transcripts of operations, or “inte@ctequences,” of a priority queue that begins and
ends with an empty queue. (Without this restriction, theiltesy language would requir@(N) space to
recognize, for simple reasons [8, Theorem 4].) Formally,

Definition 4.2. Aninteraction sequence = o103 ... oy isastring over the alphab®t= {ins(u), ext(u) :

u € [U]}. LetPQ = PQ(U) be the language defined ovewhereins(u) is interpreted as an insertion of
into a priority queue, anext () as an extraction af from the priority queue. The state of the queue at any
step; can be represented by a multiget so that

My = 0; M; = Mj_;\ {min(M;_)}if 0; =ext(v); and M; = M;_; U {u}if o; = ins(u).
(23)
Theno € pQfor |o| = N iff My =0 andVj € [N] (0; = ext(u) = u = min(M;_1)).

We start by showing that a recognizer fap can also recognizeyck (2) via an online transformation.
The reduction proceeds as follows. Consider a stpioger parentheseg:, a, b, b} and define

height(p) := [{j : p; € {a,b}}| = [{j : pj € {@,b}}|

andheight(e) = 0. We transfornmp into ¢ (p) = ¢(p1.1)¢(p1:2) - - - ¢(p1.n5) Where:

ins(2N — 2height(p;.;-1)) if p; =a
¢( ) . ext(2N — 2height(p1;i)) If i = a
PO (052N = 2height(prs 1) — 1) if pr = b

ext(2N — 2height(py.;) — 1) if p =0

For example, the stringa, a,a, b, b,a) is transformed intains(12), ins(10), ext(10), ins(9), ext(9),
ext(12)). The proof that)(p) € PQif and only if p € DYCK(2) is given in AppendixB.

Lemma 4.3. There exists a®)(log IV )-space stream reduction frobvck(2) to PQ(4N).

Our first result on the complexity of stream language redamniuses Theorem 3.1 to resolve the con-
jecture of Magniez, et all. [15] regarding the multi-pass ptaxity of Dyck(2) andpPQ.

Theorem 4.4(Multi-pass Lower Bounds fopyck andpQ). Let L denote eithepyck(2) or PQ(V). Sup-
pose there exists @(1/ log? N)-error, p-pass,s-space, randomized streaming algorithm that recognizes
on lengthA streams. Theps = Q(v/N).

Proof. Using the reduction of Magniez, et &l. [15], arerror p-pass randomized streaming algorithm for
DYCK(2) that usess bits of space on streams of lengd{mn) can be turned into &, s, ¢]-protocol for
MULTI-Al ,, ». One can similarly reduceULTI-Al,, ,, to PQ(XV); this was implicitly claimed without proof
in [15]. Alternatively, Lemma 43 gives an explicit redwsti from MULTI-Al,;, ,, t0 PQ via DYCK(2). To
complete the proof, we combine these reductions with Tmef&d, settingn = n. O

Unidirectional versus Bidirectional Passes. As noted earlierpyck (2) can be recognized i@ (log? N)
space using two passes, one in each direction. On the othdy tie above theorem implies that achieving
polylog(n) space with only unidirectional access to the input wouldfrmﬁ(\/ﬁ ) passes. To the best of
our knowledge, this is the first explicit demonstration aflsa strong separation between these two natural
data stream models.
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Algorithm 1 PQ-CHECK
1. input o = ocProligP2ol2 | oFrglr whereo?' = olr = ()
2 forke{l,...;rh,ue{l,..., U}, do flk] + 0, X[k,u] < 0,Y[k,u] < 0, Z[k,u] < 0
3 forie{l,...,r}do

4 for ext(u) € o% do

5: ¢+ min{k : f[k] < u}

6: Y[l,u] < Y[l,u] +1

7: Z[l,u] «+ max(Y[l,u], Z[¢, u])

8: for 1 <k <ido f[k] < max(u, f[k])
9: end for

10:  for ins(u) € ofi do

11: ¢ < min{k : f[k] < u}

12: if fl{] <uthenX[l,u] + X[l,u]+1
13: if fl{]=uthenY[l,u] <+ Y[l,u]—1
14:  end for

15: end for

16: if X # Z or X # Y thenrejectelseaccept

4.1 Passive Checking of Priority Queues

Given the connection betweer andDyck(2) shown in Lemma_4]3, one might hope to adapt the algo-
rithms of [15] to this problem. However, there seems to beushsasy reduction in this direction. For
intuition, observe thabyck(2) has a much stricter requirement on the permitted stringss gecond half
consists of close-parentheses only, then its first half igugty determined. On the other hand,AQ, one
can find(N/2)! sequences consisting 6f/2 insertions followed byV/2 extractions that all agree on the
second half. This suggests that the two languages are dffigeedt.

We therefore give a novel algorithm that leads to the foltayheorem, which is the main upper bound
result in this paper.

Theorem 4.5. We can recognize the language in one pass, usin@ (v N (log U + log N)) bits of space:
an inputo € PQis accepted with certainty, and an inpuitZ PQis rejected with probability> 1 — 1/N2.

Overview of the Algorithm.  We first present & (Ur(log U + log N)) space algorithm for the case when
the input string can be decomposedvas: o101 o252 .. oFro!" whereo? is a sequence of extracts
ando’i is a sequence of inserts. We refeptd o!i as theith epochof the string and note that, for sufficiently
larger, anyo is of this form. After presenting the full space algorithnme show how to transform such that
r = O(v/N) and subsequently, to reduce the spacé([Q/N). Finally, a necessary condition fer € PQ
is that the extracts in eaeh are in ascending order and theft' = " = (. Since both conditions are
easily verified, we assume that they are satisfied.

We present the algorithmQ-CHECK as Algorithn1. We first describe its properties informaligfore
proceeding to a more formal analysis.

1. For each epoch, PQ-CHECK maintains a valug k] that is the maximum value that has been extracted
after thekth epoch. In particular, at the very start of title epoch,f[i — 1] = 0.

2. Eachinsert/extract af is assignedo the earliest epoch “consistent” with the curré¢ntalues maintained
by PQ-CHECK, i.e.,/ = min{k : f[k] < u}. Eachext(u) € o is assigned to an epoch betweeand
i — 1 (this follows because the extractsdrf are in increasing order anfli — 1] equals0 when the
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first extract ino% is processed), while eadhs(u) € o't is assigned to an epoch betweermnd .
Importantly, foro € PQ, eachext(u) will be assigned to the same epoch as the most réaefit).

3. The algorithm maintains arrays, Y, and Z to track information about occurrences of itermassigned
to epochk (we later use hashing techniques to reduce the size of floisnation). Informally, X tracks
the number of insertions af assigned to epoch before the first extraction af that is assigned to epoch
k, while Y tracks the number of extractions @fassigned to epoch minus the number of insertions of
u assigned to epoch from the first extraction ofi assigned to epoch onwards. A necessary condition
is that these two counts should agree. However, this cayiatione fails to detect extractions ofthat
appear before the corresponding insertions. Therefoie,used to identify the maximum “balance” of
u during epochk. This should also matcl if the sequence is correct, and we later show that these are
sufficient conditions to check membershiprqQ.

Define fi(k) = max{u : o; = ext(u),|c™ ...0%| +1 < i < t}. Foru € [U] andt € [N], define
b(t,u) = min{k : f;(k) < u}. Given an interaction sequeneeandu € [U], define

cnt(o,u) == |{t : oy = ins(u)}| — |{t : ov = ext(u)}| .

Lemma 4.6. After processing théth element, Algorithral1 has computéfk] = f.(k), i.e., the maximum
value extracted after the end of thth epoch. For allk, f[k] is non-decreasing asincreases.

Proof. Observe that Algorithrhl1 only updatgsk] in Line[8, for k¥ < i where the current epoch is thith
epoch. The equivalence gfk] and f;(k) follows immediately by an inductive argument over f[k] =
ft(k) is seen to be non-decreasing by inspection of the definifigh(&). O

Lemma 4.7. Let X;(k,u),Y;(k,u) and Z;(k,u) denote the values ot [k, u|,Y [k, u], and Z[k, u] after
processing theth element. Assume that the fitstlements of the interaction sequence are a prefix of some
interaction sequence ipQ, i.e., for allj € [t], (0; = ext(v) = v = min(M;_1)) where{Mj}sz0 is the
family of multisets defined in E@3). Then, for any. € [U] andk = b(t, u), we have:

cnt(or.,u) = Xi(k,u) — Yi(k, u)
and fork < b(t,u), X;(k,u) = Yi(k,u).

Proof. Letu € [U] be an arbitrary element. We proceed by inductiort.offthe lemma is true fot = 0
whereXy(k,u) = Yy(k,u) = 0 for all k, u. For the inductive step with = b(t — 1, ), there are four cases
to consider:

1. Caser; = ins(u): In this caseh(t — 1,u) = b(t,u) = k. Therefore,
ent(oy.¢,u) = ent(or.i—1,u) + 1 =14+ Xyp_q(k,u) — Vi1 (k, u) = Xi(k,u) — Yi(k, u)
The last step follows whether or nét(b(t — 1,u)) = w (lines[12 and 13 in Algorithrh]1).
2. Caser; = ext(u): In this casé(t — 1,u) = b(t,u) = k. Therefore,

ent(o1.¢,u) = ent(oy.4—1,u) — 1 = Xyp—q1(k,u) — (Yie1(k,u) + 1) = X¢(k,u) — Yi(k,u)

3. Caser; = ins(v) for v # w or oy = ext(v) for v < u: In this caseb(t — 1,u) = b(t,u) = k.
Therefore,

ent(oq.4,u) = ent(oq.4-1,u) = Xe—1(k,u) — Yioq(k,u) = Xy(k,u) — Yi(k, u)
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4. Caser; = ext(v) for u < v. In this case we know thatt(o.,—1,u) = 0. Assume it was not:
then either there is a minimal prefix effor some; such thatnt(o. j,u) < 0 which implies that
o; = ext(u) butu # min(M;_;); or elsecnt(oy.—1,u) > 0 which implies thaty # min(M;_)
sincemin(M;_;) < u < v. Either way, we contradict our assumption@nTherefore,

ent(oy.¢,u) = ent(o1.4—1,u) = Xp—1(b(t — L,u),u) — Vi1 (b(t — 1,u),u)
= Xu(b(t —1,u),u) — Ye(b(t — 1,u),u)

If b(t — 1,u) = b(t,u) we are done but it is possible thatt — 1,u) # b(¢t,u). This is because
following this extraction, for all < ¢ < i, we setf[¢] to max(f[¢],v) > u which forcesb(t, u) = 1,
wherei is the current epoch. But theXi, (b(¢,u),u) = Y;(b(¢,u),u) = 0 since no inserts or extracts
of u can yet have been associated with epacHence, even ib(t — 1,u) # b(t,u), cnt(oy.4,u) =
Xi(k,u) — Yi(k,u) for k = b(t,u).

In all cases, fok < b(t — 1,u), we observe that Algorithin 1 does not modiXyjx, u] or Y[k, u| and these
are already equal by the induction hypothesisk K= b(t — 1,u) < b(t,u), then, as reasoned in case 4
above, we haveX,(k,u) = Yi(k, u) as required. O

Theorem 4.8.1f o ¢ pQ, Algorithm[1 rejects, else it accepts.

Proof. If o ¢ PQ, consider the minimunt such thato; = ext(u) andu # min(M;_1). Letk = b(t —
1,u). There are two possibilities. First, suppaset M, ;. Then, by Lemm&a4l7, before processing
Xi—1(k,u) — Yi_1(k,u) = 0. After processingr; we haveY;(k,u) = Y;_1(k,u) + 1. Hence,

Zt(k‘,u) > Y;g(k?,U) > Xt(k‘,u)

SinceZ,(k,u) is non-decreasing is and X (k,u) = X;(k,u) for s > t after f(k) becomes equal to,
at the end of the algorithr@ (k,u) # Xn(k,u). Hence the algorithm rejects. Otherwise, suppose
u € M;_1 butmin(M;_1) = v # u. Thencnt(oy.4—1,v) > 0. Letk = b(t — 1,v) and by Lemma
44, Xi—1(k,v) — Y;—1(k,v) > 0. Onceext(u) is processedf k] is increased ta and henceX(k,v) >
Y (k,v) for all s > ¢, and the algorithm rejects.

If 0 € PQ, then by Lemma4]7, at = N, X;(k,u) — Yy(k,u) = 0 for all u,k. Consequently,
Zi(k,u) > Yi(k,u) = X;(k,u) for all k,u. Sincecnt(oy, u) > 0foranyo € PQ, Yi(k,u) < Xi(k,u) for
all t. HenceZ;(k,u) < X;(k,u) and soXy = Yy = Zy and the algorithm accepts. O

Local Consistency. We now consider a substring of o and show that if it does not violate some local
conditions, then without loss of generality it can be asslitnébe in a specific form.

Definition 4.9. We sayo’ is locally consistenif both
1. Vi< k,u<wv:(o;=ins(u)) A (0}, = ext(v)) = (ent(0] q.4_q,u) <O0).
2. Vi <k,u>wv: (0] =ext(u) A (0}, = ext(v)) = (ent(oj, 1.,_1,v) >0).

Observe that it is not locally consistent, them ¢ PQ, since the identified subsequence includes an
extraction of an item which cannot be the smallest in therjpyigueue.

Lemma 4.10. Giveno = oP®'s’cSU. If o’ is locally consistent, then there exists a mappirg’) =
o%cPo°c? such thatoP®lo’ oS ¢ pqiff 0Py (0')oSUT € PQ. Here, 0% and o¢ are both sequences of
extracts in increasing order; and® and ¢ are both sequences of inserts. The algorithuB-CHECK tests
if o’ is locally consistent and, if so, compute@’) in time O(|o’|log |o”|).
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Algorithm 2 SuB-CHECK
1: input o’
2 f+ 0w« 0; E<+ 0; I+ {oo}
3: for i € [|o’]] do

4: if o} =ins(u)thenI < I U {u}

5. if o] = ext(v) then

6: m < min(7)

7: if (v > m) then reject

8: if (v =m)thenI «+ I\ {v}; w <+ max(w,v)
o: if (v < m)then

10: if v < max(f,w) thenreject

11: f+< v, E+ EU{v}

12: end if

13:  endif

14: end for

15: output (ext(v1),...,ext(v g)), ins(w), ext(w),ins(u1),...,ins(u|7)) wherev; and u; are theith

smallest values o’ and[ respectively

Proof. We first define the mapping procedurally based on local rearrangements of the localhgistent
o’ which maintain local consistency. First consider all adfgacharacter pairs of the forins(u), ext(v).
Since the string is locally consistent,> v. Whenever, > v, we interchange these characters to obtain
ext(v),ins(u), without affecting local consistency or membershipip Hence, we may assume that for
every two adjacent characteiss(u), ext(v), we haveu = v, i.e., the pair represents an insertion followed
immediately by an extraction of the same item. This gensratstringa(o’) that satisfies®'a (") oS ¢
PQiff oP's’oSUf ¢ pqQ.

We next define two rearrangement rules on substrings offiehgte ina(o”). If applied to a string that
was not locally consistent, they could “fix” errors, and leéadtrings which are irQ; however, since they
are applied to locally consistent strings, the rearrangemeeserves membership m.

1. ins(u) ext(u) ext(v) — ext(v)ins(u) ext(u).
2. ins(v) ins(u) ext(u) — ins(u) ext(u) ins(v).

By repeatedly applying these rearrangement ruleg &) until no further rearrangement is possible we
obtain3(o’). Define the potential functio® over interaction sequences@ér) = >- . _ .., ¢ Observe
that each rearrangement redudeby 1, so the process terminates. 15t’) denote the final permutation
and note thatP"®'3(c") oS\ € pQiff oP"®'s’ o5 ¢ PQ. Then, for some, o, t3, (o) has the form,

(ext(vy), ..., ext(vy ), ins(wy), ext(wi), ins(we), ext(wa), . . ., ins(w, ), ext(wy, ), ins(uy), . .., ins(uz,))
wherev; < wy < ... < wy,. Forw = max{wy, ..., wy,}, definey(o’) = 0% o°c? where
0% = (ext(vy), ..., ext(vy,)), o = (ins(w)), 0°= (ext(w)), and o = (ins(uy),...,ins(us)) .

Observe thatP'®™y (/) oS\ € pPQiff oP™e5(0")o3\T € PQandaP oo\ ¢ pQiff oP'e (o) € PQ.

We next show that it is possible to test local consistencyamdputey(c’) directly in O(|o’| log |o”])
time. ConsideisuB-CHECK in Algorithm[2.

We first argue that Algorithml 2 correctly determines whetHas locally consistent. First observe that
records the multiset of items which have been inserted and not yet extracted. A violation of Condition 1
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in Definition[4.9 is detected in lif€ 7 where the existencewof I with m < v indicates that an insufficient
number ofext(m) have occurred before thet(v) being considered.

A violation of Condition 2 is detected in liie 110: this is where current character isct(v) but there
was arext(u) for u > v earlier but no subsequeinis(v) that could be matched with the currest (v). This
is monitored via two variables;, andw. w is the maximum value extracted that is matched to an ingertio
happening withins’. f is the most recent value extracted that is not matched withi@bserve that because
of the test in lind_10f is non-decreasing. Consequentlyax(f,w) is the largest value extracted so far.
If there is some, > v such thatxt(u) occurs ino’ beforeext(v), thenmax(f,w) > u > v. Hence, it
suffices to track only the greatest extracted itera’inWe can be sure that there is he(v) matching the
ext(v) sincem = min(M;) > v: if v were matched, it would be present/iand found asn.

The algorithm computes correctly: I is the multiset of items that are inserted but not extraated, i
and E is the multiset of items that are extracted without a maghmsert ino’. As noted abovey tracks
the greatest item which is inserted and subsequently ésttacc’, so the output has the necessary form.
Implementingl and E as priority queues means that each character is procesé¥tbig|o’|) time, giving
total O(|o’|log |o’|) time andO(|o’|) space. O

Consequently, by breakinginto sequential substrings of lengtland reordering each substring (unless
we determine the substring is not locally consistent) we eragure that the interaction sequence has the
form o = oFroligP202 . oFrolr wherer = 2[N/I]. The final algorithm run®Q-cHECK and suB-
CHECK in parallel. The space required ByB-CHECK is O(l log U) bits and we will show tha#Q-CHECK
can be implemented i@ (r(log N + log U)) bits. Setting = v/N yields Theoreni 4]5.

Finishing the Proof: A Small-Space Implementation ofPQ-CHECK. Rather than maintain the arrays
X,Y, and Z explicitly in PQ-CHECK, it suffices to keep a linear hash (which serves as a homoneorph
fingerprint) of each array. These fingerprints can be conthard if they match in Ling16, then, with high
probability, the arrays agree. In Liaé 7 we need to perfonmaa operation between two values. This can
be done by maintainind’[k, f;(k)] and Z[k, f:(k)] explicitly for eachk. At any time, there are at most
r such values that are needed: observe that when(k) > fi(k), Y[k, f:(k)] and Z[k, f.(k)] are never
subsequently altered. The new values¥dk, f..1(k)] and Z[k, f;+1(k)] are initialized to 0. Hence, the
space of the algorithm i€(r) words to store th&[k, f[k]], Z[k, f[k]] and f[k] values, and a constant
number of fingerprints to represeit Y, andZ.

4.2 Passive Checking of Stacks, Queues, and Deques

Stack. Let sTACK denote the language over interaction sequences that pon#s to stack operations.
Now ins(u) corresponds to an insertion oto a stack, andxt(u) is an extraction of. from the stack. Then
o € STACK iff o corresponds to a valid transcript of operations on a stadkhwétarts and ends empty.
That is, the state of the stack at any sjegan be represented by a strifg so thatS? = (), S7 = S if
0; = ins(u) andS? = S 0, if o; = ext(u). Theno € STACK for |o| = N iff

SN=0 and Vje[N],(0j=ext(u) = u=25"")

Theorem 4.11. Every O(1/ log? N)-error, p-pass,s-space randomized streaming algorithm to recognize
STACK on lengthN streams must satisfys = Q(v/N). It is possible to recognizeTACK in one pass with
O(v/Nlog N) bits of space with high probability.

Proof. First, we observe that fdV = 2, DYCk(U) = STACK if we associaténs(u) with w andext(u) with

u. Therefore, the lower bound follows immediately. For theepbound, the one-pass algorithm fram|[15]
to recognizepyck (2) can be used to recognizgAck over arbitraryl by appealing to their reduction from
DYCK(U) to DYCK(2). O
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We note that the algorithm df [15] for recognizimyck (2) can be used directly to recognieeck (U)
rather than appealing to the reduction framck (U) to Dyck(2). In outline, the algorithm works as
follows. The input string is broken into blocks of lengthiV. Within each block, any adjacent pair of the
form (ins(u),ext(u)) can be matched and removed. When no further removals of arpossible, the
block now has the form of a prefix of extracts followed by a suffiinserts. The algorithm keeps a stack of
hashes of (item, height) pairs, along with the number of §sommarized in each hash. Each item extract
in the block, along with the current height, is removed frdma hash on the top of the stack, until the hash
supposedly represents no items. If the hash is not idelytizato, the algorithm rejects. Otherwise, the
procedure proceeds to the next hash on the stack, until &fie pf extracts are exhausted. Then the inserted
items are hashed with their current height, to build a simgle& hash value which is pushed onto the top of
the stack.

Queue. Let QUEUE denote the language over interaction sequences that ponedo queues. That is,
the state of the queue at any stgpan be represented by a strifly so thatQ? = 0, Q7 = Q' 'u if
0; = ins(u) andQ’ = Q) ;. if o = ext(u). Theno € QUEUETor [o| = N iff

QN =0 and Vje[N]|(o;=ext(u) = u=0Q"

As observed in[[5], it is possible to recognige EUE with a single pass an@(log V) space: we use a
single fingerprint to check that the value of tile insert equals the value of thith extract for alk € [NV].

Deque. Let DEQUE denote the language over interaction sequences that pones to double-ended
gueues. That is, there are now two types of insert and extyaarations, one operation for the head and
one for the tail. Clearly, since a deque can simulate a st&cloperations on the tail only, recognizing
DEQUE s at least as hard as recogniziagack. For the upper bound, it is possible to adapt the algorithm
of [15]. Again, each block of/N operations is partitioned into a prefix of extractions (tadand tail) and
insertions (to head and tail). Now we maintain a deque of vafiles of item, height pairs. Each extract
to the head is applied to the hash at the head of the deque leéd)aand each extract to the tail is applied
to the hash at the tail of the deque. The same check is ap@ligdhash which should now summarize no
items must be identically zero (otherwise, the algorithjeats). Inserts to the head are parceled up into a
hash which is placed at the head of the deque, and inserte taitrare placed in a hash at the tail of the
deque. Then we acceptif after processing the algorithm reaches an empty deque and has not rejected at
any point. This gives the following theorem.

Theorem 4.12. Every O(1/ log® N)-error, p-pass,s-space randomized streaming algorithm to recognize
DEQUE on lengthN streams must satisfys = Q(v/N). It is possible to recognizeEQUE in one pass with
O(v/Nlog N) bits of space with high probability.

4.3 \Variations with timestamps

As noted in the introduction, the results of Blum etlal. [5) & viewed as recognizing languages where each
ext(u) is augmented with the timestamp of its matching(«), and is denotedxt(u, ¢t). These languages
are defined as before, but with the additional constrairasahcht € [IN] appears at most once across all
extracts and

Vj € [N], (0j = ext(v,t) = oy = ins(v))

This defines the variant languag@sEUE-TS, STACK-TS, DEQUE-TS andPQ-TS. The observations of
Blum et al. imply that verifying strings iSsTACK-TS andQUEUE-TS (and ensuring that all the timestamps
are also consistent) requires or}(log N) space. The same argument also giveCdtvog N) bound
for deques. FopQ-Ts, the problem seems harder: Chu et al. [8] gav@m/ﬁ) streaming algorithm
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which relied heavily on the presence of timestamps (andéhdoes not recognizeQ without timestamps).
We leave as an open question the problem of fully resolviegcttmplexity of recognizing priority queue
sequences with timestamps, since the reduction via augeh@rdexing no longer holds in this case.
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A Proof of the Direct Sum Theorem

For completeness, we give a full proof of our direct sum thaothat relates the information complexity of
MULTI-Al with that of Al. We begin with a small technical lemma that is an interestibgervation in its
own right.

Lemma A.1l. Let P be a communication protocol involving two players, Alicel @ob, who share a public
random stringR in addition to their private random strings. L&t denote the transcript aP when Alice
receives inpufX and Bob receive¥’, from an arbitrary input distribution. Letl and B denote the portions
of T that are communicated by Alice and Bob, respectively. Then

(T:X|Y,R) = [(A: X|Y,R)and (T :Y | X,R) = I(B:Y | X,R).
Proof. By the chain rule for mutual information, we have
(T:X|Y,R) = (AB: X |Y,R) = (A: X |Y,R)+1(B: X | AY,R).

Since Bob’s messages are just some functiom oY, R, and his private coins, for any fixed setting of
A,Y, R, we have thaBB and X are independent. Thug,B : X | A,Y, R) = 0. Similarly, we can show that
(T:Y|X,R)=1I(B:Y | X,R). O

Theorem[3.2 (restated). Suppose there exists@, s, ¢]-protocol ) for MULTI-Al,, ,,. Then there exists an
e-error randomized protocaoP for Al,, in which Alice sends at mogk bits in total, and which satisfies

. B .
m -icost,, (P) < 1costu8;)m(Q) ,

wherepy is as in Definitio 211 angii™ denotes then-fold product ofy with itself,

Proof. Using @, we can derive a family{ P; } <[, of protocols forai, using the following simulation.
Suppose Alice and Bob receive inputgind(k, ¢, x1.5_1) respectively.

1. Alice setsA;’s input tox and Bob setd3;’s input to (k, ¢, x1.5—1).

2. The players generafé!, X2, ..., X/—1 xi+tL . X™ K' . . K/~!independently and uniformly
at random usingublic coins. They choos€,...,C7~! so thatX},, = C’ for all i € [j — 1]. This
sets the input to playerd;, By, ..., A;_1, B;_1 and ensures thafX*, K*, C*) ~ po for all i < j.

3. Bob generate&7 ! K12 . K™ independently and uniformly at random usigvate coins. He
chooseg’/ !, ... C™ so thatX}., = C" for eachi € {j + 1,...,m}. This sets the input to players
Aji1,Bjta,. .., Am, By, and ensures thdfX*, K*, C%) ~ po for all i > j.

4. The players now jointly simulat@ on the random inpuZ thus generated. In each round:

(a) Alice simulates playerd,, By, ..., A; and sends Bob the message tHatwould have sent to
B;.

(b) Bob simulates3;, A1, ..., B, and then sends Alice the message tHatwould have sent to
Am.
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(c) Alice then continues the simulation df,,, ..., A; and moves on to beginning of the next round
(if required), without having to communicate anything.

5. At the end of the simulation, Alice outputs the answer giayer A; would have output ird).

Clearly, Alice communicates at mgst bits in P;. The definition ofu, ensures thati (X?, K¢, C*) = 0
for all < # j, and thereforavuLTI-AI (Z) = AI(X, K, C); thus P; is correct whenevef) is correct on the
randomly generated input. This bounds the worst-case ef®y by . To bound the information cost &t;,
notice that when the input tB; is distributed according tpo, it simulates) on an input that is distributed
according tou§™. Let (X7, K7,C7) denote a random input t&; distributed according tg, and let
T and B denote the resulting random transcript/f, and Bob’s portion of this transcript, respectively.
Defining M,,, andR as in [22), we see thd& = M,,, and that the public random string usedByis exactly
R = (R, X K!' ... K’~1). Thus,

icost} (P;) = I(T: K’,C7 | X7, R)
= I(B:KJ,C7 | X R))
= I(M,, : K?,¢7 | K', ..., K77 X', ..., X™ R),

where the second equality follows from LemmalA.1. By the ohale for mutual information, we have

icost,om (Q) = 1(Mp, : Ktcl. .. K™ Ccm™| X ... X™ R)

[
NE

(M, : K7,¢7 | K',Ct, ... K9t ¢/t X1 ... X™ R)

<.
Il
—

(M, : K7,¢7 | K',... K71 X', ..., X™ R) (24)

<
Il
—

I

icostfO (P),

I
NE

<.
Il
-

where [2#) holds because’ and K7 completely determin€”, according to the distributiop,. Picking j

to minimizeicost/; (P;) now gives usn - icost/; (P;) < icost, om (Q). O

B Reduction from DYCK (2) to PQ
Lemmal4.3 (restated). There exists a® (log N)-space stream reduction frob¥ CK(2) to PQ(4N).
Proof. Consider a string over parenthese§:, a, b, b} and define

height(p) = | {j : p; € {a.b}}| — | {4 : p; € {a,0}}|

andheight(e) = 0. Define the transformation by ¥ (p) = ¢(p1.1)d(p1:2) - . - ¢(p1.5) Where:

ins(2N — 2height(p1.;-1)) if p; =a

) ext(2N — 2height(p1.4)) ifp,=a

¢pr:i) = ins(2N — 2height(py.;—1) — 1) ifp;=0b
ext(2N — 2height(p1.;) — 1) if p; =0
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First, note that the transformation can be don®fiog V) space since it is sufficient to maintain the
height of the last two elements. The transformation is dafé], since for any arbitrary string of N
parentheses N < height(p1.y—1) < N.

We now argue that € DYCK(2) iff ¢)(p) € PQ. For notational convenience, we first definé|p’) =

o(P'p1:1)d(P'P1:2) - - - B(p'P1.p)) @Nd note that(p'p) = ¥ (»' )Y (p|p").

e p € DYCK(2) impliesy(p) € PQ: We prove this by induction on the length @f We may decompose
p = p'cep® wherec € {a,b} andh = height(p') is maximal over all such decompositions. Without
loss of generality assume= a. Note thatp!p? € pyck(2) and hence, by inductiog(p'p?) =
»(p")(p?|pt) € PQ. But observe that

P(p) = (p" ) (bblp" )Y (p|p'bb) = ¥ (p" )1 (bblp" )y (p*[p")

which is inPQ because)(p!)y(p?|p!) € PQandy(bb|p!) = ins(2N — 2h — 1) ext(2N — 2h — 1)
where2N — 2h — 1 < {u : ins(u) € ¥ (p*)}. Sinceh is maximal 2N — h — 1 is indeed the smallest
value when it is extracted.

e p ¢ DYCK(2) implies(p) ¢ PQ. Sincep ¢ DYCK(2), a standard characterization of the language
implies that one of the following cases is true:

— Case 1.height(p1.n) # 0. Therefore, there are different numbers of extracts anerisisn
1 (p) and hence)(p) ¢ PQ, since each open parenthesis maps onto an insert and eaeh clo
parenthesis maps onto an extract.
— Case 2height(p1.;) < 0 for somei € [N]. Therefore, there are more extracts than inserts in a
prefix of ¢»(p) and hence)(p) ¢ PQ.
— Case 3. There exists a smallgsuch that for someé < 7,
* height(plzi_l) = height(plzj) =:h
* p1. j—1 IS a prefix for a string iryck (2) and hence)(p;. ;1) is a prefix for a string irPQ
* (pi,p;) = (a,) or (pi, pj) = (b,a).
Sincev(p1. j—1) is a prefix for a string irrQ, we can consider the stat&/;_;, of the priority
queue after the interaction sequene@;.;—1) as defined in Definitioh 412. Note that; _;
contains at most one element frofpN — 2k — 1,2N — 2k} for eachk (elsej was not the
minimal choice). If(p;, p;) = (b,a) then2N — 2h — 1 € M;_;. But¢(p1. ) = ext(2N — 2h)
and we therefore deduce thatp) ¢ PQ. If (p;, p;) = (a,b) then2N — 2h € M,_; and hence
2N —2h —1 ¢ M;_,. Sincep(p1. j) = ext(2N — 2h — 1), we deduce thap(p) ¢ PQ.

O

20



	University of Massachusetts Amherst
	From the SelectedWorks of Andrew McGregor
	2010

	Information Cost Tradeoffs for Augmented Index and Streaming Language Recognition
	1 Introduction
	2 Augmented Index and an Information Cost Tradeoff
	3 A Direct Sum Argument
	4 Streaming Language Recognition and Passive Memory Checking
	4.1 Passive Checking of Priority Queues
	4.2 Passive Checking of Stacks, Queues, and Deques
	4.3 Variations with timestamps

	A Proof of the Direct Sum Theorem
	B Reduction from dyck (2) to pq

