
Other
Basic-block Instruction Scheduling Using Reinforcement Learning and Rollouts
Computer Science Department Faculty Publication Series
Publication Date
2002
Abstract
The execution order of a block of computer instructions on a pipelined machine can make a difference in its running time by a factor of two or more. In order to achieve the best possible speed, compilers use heuristic schedulers appropriate to each specific architecture implementation. However, these heuristic schedulers are time-consuming and expensive to build. We present empirical results using both rollouts and reinforcement learning to construct heuristics for scheduling basic blocks. In simulation, both the rollout scheduler and the reinforcement learning scheduler outperformed a commercial scheduler on several applications.
Disciplines
Comments
This paper was harvested from CiteSeer
Citation Information
Amy McGovern, Eliot Moss and Andrew G. Barto. "Basic-block Instruction Scheduling Using Reinforcement Learning and Rollouts" (2002) Available at: http://works.bepress.com/andrew_barto/12/