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Abstract

We study the maximum flow possible between a single-source and multiple
terminals in a random graph (modeling a wired network) and a random geometric
graph (modeling an ad-hoc wireless network). We show for both models that the
maximum flow is tightly concentrated around its mean. Specifically for n nodes
in a network such that any two nodes have a probability p of connectivity, the
maximum flow between a single source and multiple terminals is approximately
(n—1)p for large n. Similar results are obtained for the case of n randomly located
nodes on the unit square.

1 Introduction

Consider a communication network where one source node wants to transmit information
through a network to multiple terminal nodes. This paper considers the problem of
finding the capacity of this scenario under the assumption of random node placement.
The capacity under consideration here is the graph-theoretic max-flow capacity, not the
capacity in the information-theoretic sense. It is a known fact that routing achieves the
max-flow minimum cut [1] capacity of a network when transmissions are point to point
(for a wired network). However, recent results have shown that for the single source
- multiple terminal case, the information rate to each terminal is the minimum of the
individual max-flow bounds over all source-terminal pairs under consideration and that
in general we need to code over the links in the network to achieve this capacity [2]. Li
et al. [3] have shown that linear network coding is enough to achieve the capacity of the
transmission of a single source to multiple terminals.

It is important to clearly differentiate between routing and network coding. We say
that a network employs routing when each node in the network performs only a “replicate
and forward” strategy. Thus each node can create multiple copies of a received packet and
forward it on different lines. “Network coding”, on the other hand, refers to the situation
when each node has the ability to perform operations such as linear combinations on the
received data and then send the result on different lines. So, routing is a special case of
network coding.

The usefulness of network coding can be understood by considering a simple topology
shown in Fig. 1, which we borrowed from [4]. We assume that each link can transmit a
single-bit, error-free and delay-free. Observe that performing network coding (as shown



Figure 1: Network with source s and terminals y and z

in Fig. 1) enables transmission of both b; and by to both the terminals y and z simulta-
neously whereas routing would require two transmissions. In this paper only the source
and the terminal nodes are communicating with each other and the rest of the nodes are
acting as relays. In the subsequent sections we shall use the term “s-t minimum cut” for
the source-terminal minimum cut and the term “global minimum cut” for the minimum
of the s-t minimum cuts over all possible source-terminal pairs in the network.

Sections II and III prove concentration theorems for random graphs [5] (a model
for wired networks) and random geometric graphs [6] (a model for wireless networks)
respectively. In both cases the s-t minimum cut is concentrated about its mean. Section
IV provides simulations that confirm the concentration results and reveal the mean to
be approximately (n — 1)p where p is the probability of an edge. Using [2] this implies
that for large n rates close to np can be reliably sent from a single source to multiple
terminals via linear network coding [3] for wired networks. For wireless networks however
the result is an upper bound on the achievable information transfer [7] since effects such
as interference cannot be modeled.

2 Wired Networks - The Random Graph Model

We consider the random graph as a model of a wired network. This is not the only
model for wired networks in general. The Internet, for example, has been shown to
obey a power-law [8]. However the random graph gives us a good framework to analyze
a network whose topology is unknown. The random graph G(n,p) is defined in the
following manner :

Definition 1 (Random Graph) Given n € N and 0 < p < 1, we define G(n,p) as a
graph on the verter set V.= 1,...,n, generated by choosing an edge between any two
vertices with probability p.

The number of edges in the random graph is a random variable. The minimum cut
between any source-terminal pairs in the graph is also a random variable. The mean
of the s-t minimum cut is equal to the maximum information flow the pair can achieve
on average. We now provide bounds on the tail distribution of s-t minimum cuts in the
random graph defined above.

In his derivation of fast randomized algorithms for finding the minimum cut of a
deterministic graph, Karger [9] proved a concentration result for random subgraphs or



“skeletons” of the original deterministic graph with global minimum cut ¢ and s-t min-
imum cut v (for some s, t). For the theorem below, a skeleton G,, of the original graph
G is constructed by retaining each edge of G with probability p.

Theorem 1 (Karger’s Concentration Result) Let G be any graph with global minimum
cut ¢ and let,

3(d+2)(Inn)
p - 620 (]‘)
where d € Z7", e € RT such that p < 1. Suppose the s-t minimum cut of G (for some
s, t) has a value v. Then with probability 1 — O(1/n?) the s-t minimum cut in G, has
value between (1 — €)pv and (1 4 €)pv, and the global minimum cut has value between

(1 —€)pc and (1 + €)pc.

Note that in the above theorem,

~ [3(d+2)(Inn)
- A2 )

Inn

As we shall see below for the graphs of interest, ¢ o« n and consequently ¢ = O p

i.e. € is small for large n. We use Karger’s theorem to prove the following corollary.

Corollary 1 (Concentration Result for Complete Graphs) For a random graph G(n,p)
for e =+/3(d+2)(Inn)/p(n — 1), the probability that the value of some s-t minimum cut
is more than (14 €)p(n — 1) or less than (1 — €)p(n — 1) is O(1/n?). Also the probability
that the global minimum cut is more than (1 + €)p(n — 1) or less than (1 — €)p(n — 1) is
O(1/n%).

Proof: Let G be an instance of G(n,p) and let G, denote the complete graph (every
vertex connected to every other vertex) on n vertices. In Theorem 1 we choose G to be
G..

Any s-t minimum cut in G. has a value (n — 1) since every node is connected to
every other node. Since the global minimum cut is the minimum value of a cut over all
source-terminal pairs, the global minimum cut is (n — 1) as well. Now using (2) we can
compute a value of € for a corresponding value of d. If ¢ < 1 then by Theorem 1 the s-t
minimum cut and the global minimum cut of G have a value between (1 —¢)p(n — 1) and
(14 €)p(n — 1) with high probability for large n. B

The higher d is in (1) and (2), the lower the tail probability. At the same time, a
higher d causes € to increase. There is a trade-off between these two parameters that
decides the tightness of the bound.

Thus, in a random graph there is a strong case for using network coding since the s-t
minimum cut provably remains more or less concentrated about its mean. On average
we won’t lose much because of the random nature of the graph. Note that for a wired
network the capacity of the single-source multiple-terminal information transfer (i.e. the
minimum of all the s-t minimum cuts) is actually achievable. There exists a network code
that can be found in polynomial time [10] that achieves this capacity. However the result
above is an “existence result”, we do not provide an algorithm for finding the network
code.



3 Ad Hoc Wireless Networks - The Random Geo-
metric Graph Model

At first one might consider network coding inappropriate for a distributed wireless net-
work because transmissions from relatively simple distributed wireless nodes (such as
wireless sensor networks) are typically omni-directional, precluding the transmission of
different bits from the same node to different links at the same instant of time and in the
same frequency band. However communication has been shown to dominate all other
sources of energy consumption in a sensor network. So, in order to save power, wireless
sensor nodes typically will go into a sleep mode [11] from which they periodically awaken
to listen for transmissions. Furthermore, nodes negotiate time slots and frequency slots
with which to communicate for both transmission and reception, also with a desire to
minimize power drain. Under these practical assumptions network coding ideas would
be possible to implement in a wireless network. Observe that many sensor networks
would need a sensor node to periodically send data to a set of other nodes. Network
coding might provide a viable solution to the low-energy single-source multiple terminal
information transfer problem where distinct edges correspond to different frequencies or
time slots in a single transmission epoch.

The random graph model of Section II is definitely not a realistic model for a wireless
ad-hoc network or sensor network because it places edges between nodes independent of
the distance between them. Distance is a critical factor in determining the connectivity
properties of a wireless network since propagation losses cause the power of the signal to
fall off as r= where 2 < o < 4. To properly model wireless networks, consider a class of
graphs known in mathematical literature as random geometric graphs [6].

Definition 2 Random geometric graphs G,(d,r),0 < r < 1 are defined on the unit
cube [0,1]%,d > 2 by randomly choosing a sequence I = [I1, I5..., I,] of independent and
uniformly distributed points (vertices) on [0,1]% and by choosing a distance metric d(i, j)
that gives the distance between the vertices i,j € V. If d(i,j) < r then there exists an
edge between i and j.

In general we could assign a weight to the edge. However for simplicity we shall assign
unit weight to all edges. In this work we consider the L? norm (standard Euclidean
distance) as our distance metric. Compared to the random graph, the random geometric
graph is an inherently harder model to work with since the nature of the graph induces
dependencies between edges as shown below. In the random graph, the edge probabilities
are independent and identically distributed. However, as we shall see, for the random
geometric graph the edge probabilities are identically distributed but not independent.

Consider three vertices 7, j, k in the random geometric graph as illustrated in Fig. 2.
The region R; is the circle centered at i. We denote the fact that ¢ and j are connected
by i — j (Fig. 2). Since node placements are i.i.d., it follows that

Pli — k] = P[i — j]
_ Area(R;) (3)
Area(U)

However, the critical point is that,

Pli — kli — j,k — j] # Pli — k] (4)



Figure 2: Note that if a third node k is connected to j then it surely falls in the shaded
area IR;. If it falls in R;; = R; N R, then it is also connected to i.

This is because, from Fig. 2

‘ o . Area(R;) , Area(R;)
P k k = J 5
[7“ - |7’ - .]7 - ]] Area( ]) # Area(U) ( )
Note that in the random graph case,
Pli — jlj — k,i — k] = P[i — j] (6)

because edges are chosen independently. The analysis in [9] proceeds via the Chernoff
bound that is suited to the random graph model since the edge probabilities in that case
are independent. However we cannot use that analysis for the random geometric graph
since the edge probabilities are surely not independent based on the discussion above.

In this section we analyze the behavior of the s-t minimum cut and the global min-
imum cut in a random geometric graph. This analysis only provides an upper bound
on the amount of information flow possible since max-flow bounds are upper bounds in
general for wireless systems [7]. Let,

Xip = {1 if 1 — k, (7)

0 otherwise

Without loss of generality consider a cut in which the first & nodes, labeled 0, 1, ..., (k—
1) are in one set and the (n — k) nodes, labeled k,k + 1, ..., (n — 1) are in the other. We
define a function f(Xo g, Xokt1s -y X0n—1y-eeoes Xkt ks Xko1 k415 --s Xk—1n—1) (henceforth
just f for convenience) that finds the value of the cut.

k—1 n—1
F( X0k Xokt1s -oor Xog—1s covees Xbot ks XboT 1y oeos Xboln—1) = Xi; (8)
=0 j—k
Let
Ni = E[f‘ XO,kvXO,k+1-~-] (9)
—_———
7 terms

Thus, N; is the expected value of the cut given that we know the status of the first ¢
links out of the possible k(n — k) links. We can show that N; is a martingale [12]. Also
we have,

[Ni — Nia| <1 (10)



This follows directly from the fact that the cut can change by at most 1 through the
disclosure of the status of a link.

Note that Ny = E[f] and Ni,—r) = f. Using Azuma’s inequality [12], we have the
following theorem.

Theorem 2 Let Cy, be a cut in a random geometric graph G(V, E) that is defined by
partitioning the vertex set (V) into a set Vi (|Vi| = k) and the complementary set Vi
(\Vi| =n — k). Then,

_ szk(nfk)uz
2

P(ICy — k(n — K)u| > ek(n — k)u) < 2 (11)

where p = Pli — k| = E[X, ] is the probability that two nodes i and k are connected.

Proof: The proof follows by choosing the sequence Ny, Ns... as our martingale sequence.
By (10) we satisfy the bounded difference requirement. Applying Azuma’s inequality we
obtain,

P(|Nk(n7k) - N0| > t) < 26_2’“(2—7@) (12)

Choosing t = ek(n — k) we have the result. B
Now we show that as in the case of the random graph, all cuts in a random geometric
graph are concentrated around their mean value.

Theorem 3 Let € = ,/M, with p as defined above. If € < 1, then with probability

np?
1 —0(1/n7), every cut in a random geometric graph G has a value between 1 — € and
1+ € times its expected value.

Proof: Let m = 2™ — 2 be the number of cuts in the graph G.

k(n—k) possible edges

k vertices

(n—k) vertices

Figure 3: There are (}) cuts of expected size k(n — k)p. One such cut is illustrated here.

There are (Z) cuts that divide the graph into two sets with £ and n — k vertices

respectively as shown in Fig. 3. We call them, cuts of type é. Let py = probability that
a cut of type % deviates by more than e from its expected value, in a random instance

of GG. Then by the union bound,
P(Some cut deviates by more than €) < Z (Z) D (13)

From Theorem 2 we obtain , ,
—e“k(n—k)p

e (14)



€

n 2
For notational convenience we define § = e~ 2 . Then we can upper bound the
RHS of (13) as,

n ™ gnd)a-%)
Z (k)pk < QZ (k)ﬁ

k=1

(a) o2 n k k — n k k

a n(E)1-%) n(2)1-£)

EXNWE N WEEE
k=1 k=n/2+1

®) n/2 n n—1 n X (15)

k/2 n(%—%)

< 2 <k)6 + > <)ﬁ ]

k=1 k=n/2+1

where inequality (b) follows from the fact that (£)(1—%) > & for £ € [0,1/2] and (£)(1—

2n?
EY> (5 — £) for £ € [1/2,1]. Inequality (c) follows from the fact that S (1)BH? <

. (2)6’“/2. Now if we choose, € = 4;1%, where ¢ > 2 we can simplify the above

expression (for large n) as,

4[(1 + %)n — (1+ (ic)nzﬂ ~O(1/n") wherey=c—1 (16)

n n
There is a trade-off between p, € and ~ that decides the tightness of the bound. At a
given p, a higher v gives a lower tail probability, but at a higher e. Note that a high
value of p makes it easier to achieve a lower value of e.

Again for an ad-hoc network modeled by a random geometric graph we do not lose
much because of a lack of control over placement of the nodes as long as we have a
sufficiently high number of nodes.

4 Simulations and Discussion

4.1 Boundary effects in random geometric graphs

We have derived the concentration results for both random graphs and random geometric
graphs. Since all the s-t pairs are statistically the same in a random graph, the mean
of the s-t minimum cut can be calculated by averaging over randomly picked s-t pairs.
However this approach does not work for a random geometric graph where nodes at
the boundary usually have fewer links than those at the center. The s-t pairs at the
boundary will have smaller minimum cuts. According to Theorem 3 each cut is still
concentrated around its own mean, but the average over different s-t minimum cuts
will become smaller. Also due to the boundary effects, the global minimum cut will be
dominated by the s-t minimum cuts at the boundary and will consequently achieve a
lower value. The same boundary effects are also reported in [13].

One way to avoid the boundary effects is to use a toroidal distance metric [13]. With
a toroid, nodes at one boundary of a hypercube are considered to be close to the nodes
at the opposite boundary i.e. nodes at the left boundary of a square can have links with
nodes at the right boundary, and nodes near the top of the square can have links with



those at the bottom. All the s-t minimum cuts are equivalent in the toroidal case. Fig.
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Figure 4: Boundary Effects in Random Geometric Graphs

4 shows the boundary effects in random geometric graphs with 1000 nodes varying with
respect to r, where r is the access range of a node. The gap between the curves for the
toroidal and open boundary case gets bigger as r increases. This is because the number
of nodes residing in the boundary increases with r.

4.2 Mean of s-t minimum cuts

For a random geometric graph with n nodes which are uniformly distributed in the two
dimensional box [0, 1]?, a pair of nodes are connected if and only if the distance between
them is less than 7. Denote py(x) as the probability density function of the squared
distance between two arbitrary nodes for the open boundary case, where z = r2. Then,

T—4/T+ T 0<z<1

pd(x):{2arcsin(%_1)+4\/9€—1—l’—2 l<z<2 (1)

In the toroidal case, the squared distance between two nodes has the density function,

™ 0<z<1/4

/ —
Palz) = { 2arcsin(o — 1) 1/4 <z <1/2.

(18)

Simulation shows that as far as the s-t and global minimum cuts are concerned, a ran-
dom graph G(n,p) and a random geometric graph with parameter’s n and r under the
toroidal distance metric are equivalent if p and r are related by the cumulative distri-
bution function of (18). In particular, the means of the s-t minimum cuts of both the
random graph and the random geometric graph defined on a torus are approximately
(n—1)p &~ np, where n is the number of nodes, p is the probability of presence of an edge
for the random graph and the corresponding probability p/;(X < r?) computed according
to (18) for the random geometric graph. The means of s-t minimum cuts for different
random graphs and random geometric graphs along with the corresponding np values
(labeled “Theory”) are presented in Fig. 5(a) and Fig. 5(b) respectively.

4.3 Concentration of minimum cuts

Theoretically the tail bounds for the random geometric graph are weaker than those
for the random graph because the former are obtained via martingale arguments while
the latter are obtained via Chernoff bounds. Simulation results on random graphs with
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Figure 5: (a) Random Graphs: s-t minimum cuts and their means (b) Random Geometric
Graphs: s-t minimum cuts and their means

= 1000, p = 0.05 and random geometric graphs with same number of nodes and
r = 0.1262 (chosen such that p/;(X < r?) = p) are presented in Fig. 6. The resemblance
of Fig. 6(a) and Fig. 6(b) suggests that the difference might be negligible in the toroidal
case. However Fig. 6(c) shows that in the open boundary case the histogram spreads to
the lower end, which corresponds to those s-t minimum cuts comprised of nodes at the
boundary. It is worth noting that for small r, the boundary effects are negligible as is
also shown in Fig. 4.

800 800
600 | 600
& mean=45.99 g mean=45.97
Q [}
S 400 3 400
g var=30.57 g var=31.13
%200t % 200 H‘
0 0 ||I|
10 20 70 10 20 70
CapaC|ty of s—t minimum cuts Capacny of s—t minimum cuts
(a) (b)
800 ‘
600
& mean=42.52
[
400
g var=54.02
% 200
o : ;
10 70
Capamty of s—t minimum cuts
(c)

Figure 6: Histograms of s-t minimum cuts for (a) random graphs, (b) random geometric
graphs with toroidal boundaries, (c¢) random geometric graphs with open boundaries.
Note the similarity between (a) and (b) and the difference from (c).

5 Conclusion

We presented basic results on the concentration of the s-t minimum cut and global
minimum cut for a random graph and a random geometric graph. It is interesting



to note that even though the random geometric graph has dependencies among edges,
the s-t minimum cut still behaves asymptotically as that of a random graph with an
appropriately chosen probability based on (17) or (18). Steps have been taken by Koetter
and Medard [4] towards the construction of network codes that achieve the promised
capacity. Thus, as far as single-source multiple-terminal information transfer in wired
networks goes network coding seems to be a strong competitor to routing. Our results on
random geometric graphs also suggest that it might be a viable alternative for wireless
networks.
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