Articles «Previous Next»

Impact of limited solvent capacity on metabolic rate, enzyme activities, and metabolite concentrations of S. cerevisiae glycolysis

Alexei Vazquez, The Simons Center for Systems Biology, Institute for Advanced Study
Marcio A. de Menezes, Instituto de Física, Universidade Federal Fluminense
Albert-László Barabási, Northeastern University
Zoltan N. Oltvai, University of Pittsburgh

Article comments

Originally published in PLoS Computational Biology 4(10), 2008. doi:10.1371/journal.pcbi.1000195

Abstract

The cell’s cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo.

Suggested Citation

Alexei Vazquez, Marcio A. de Menezes, Albert-László Barabási, and Zoltan N. Oltvai. "Impact of limited solvent capacity on metabolic rate, enzyme activities, and metabolite concentrations of S. cerevisiae glycolysis" Physics Faculty Publications (2008).
Available at: http://works.bepress.com/abarabasi/2